Effects of Caffeinated Gum on a Battery of Soccer-Specific Tests in Trained University-Standard Male Soccer Players

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Mayur K. RanchordasSheffield Hallam University

Search for other papers by Mayur K. Ranchordas in
Current site
Google Scholar
PubMed
Close
*
,
George KingSheffield Hallam University

Search for other papers by George King in
Current site
Google Scholar
PubMed
Close
*
,
Mitchell RussellSheffield Hallam University

Search for other papers by Mitchell Russell in
Current site
Google Scholar
PubMed
Close
*
,
Anthony LynnSheffield Hallam University

Search for other papers by Anthony Lynn in
Current site
Google Scholar
PubMed
Close
*
, and
Mark RussellLeeds Trinity University

Search for other papers by Mark Russell in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The purpose of this study was to determine whether caffeinated gum influenced performance in a battery of soccer-specific tests used in the assessment of performance in soccer players. In a double-blind, randomized, crossover design, 10 male university-standard soccer players (age: 19 ± 1 years, stature: 1.80 ± 0.10 m, body mass: 75.5 ± 4.8 kg) masticated a caffeinated (200 mg; caffeine) or control (0 mg; placebo) gum on two separate occasions. After a standardized warm-up, gum was chewed for 5 min and subsequently expectorated 5 min before players performed a maximal countermovement jump, a 20-m sprint test, and the Yo-Yo Intermittent Recovery Test Level 1. Performance on 20-m sprints was not different between trials (caffeine: 3.2 ± 0.3 s, placebo: 3.1 ± 0.3 s; p = .567; small effect size: d = 0.33), but caffeine did allow players to cover 2.0% more distance during Yo-Yo Intermittent Recovery Test Level 1 (caffeine: 1,754 ± 156 m, placebo: 1,719 ± 139 m; p = .016; small effect size: d = 0.24) and increase maximal countermovement jump height by 2.2% (caffeine: 47.1 ± 3.4 cm, placebo: 46.1 ± 3.2 cm; p = .008; small effect size: d = 0.30). Performance on selected physical tests (Yo-Yo Intermittent Recovery Test Level 1 and countermovement jump) was improved by the chewing of caffeinated gum in the immediate period before testing in university-standard soccer players, but the sizes of such effects were small. Such findings may have implications for the recommendations made to soccer players about to engage with subsequent exercise performance.

Ranchordas, King, and Russell are with the Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom. Lynn is with Food Group, Sheffield Business School, Sheffield Hallam University, Sheffield, United Kingdom. Russell is with the School of Social and Health Sciences, Leeds Trinity University, Leeds, United Kingdom.

Address author correspondence to Mayur K. Ranchordas to m.ranchordas@shu.ac.uk.
  • Collapse
  • Expand
  • Andrade-Souza, V.A., Bertuzzi, R., de Araujo, G.G., Bishop, D., & Lima-Silva, A.E. (2015). Effects of isolated or combined carbohydrate and caffeine supplementation between 2 daily training sessions on soccer performance. Applied Physiology, Nutrition, and Metabolism, 40(5), 457463. PubMed ID: 25884315 doi:10.1139/apnm-2014-0268

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Astorino, T.A., Matera, A.J., Basinger, J., Evans, M., Schurman, T., & Marquez, R. (2012). Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids, 42(5), 18031808. PubMed ID: 21461905 doi:10.1007/s00726-011-0900-8

    • Search Google Scholar
    • Export Citation
  • Bangsbo, J., Iaia, F.M., & Krustrup, P. (2008). The yo-yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Medicine, 38(1), 3751. PubMed ID: 18081366 doi:10.2165/00007256-200838010-00004

    • Search Google Scholar
    • Export Citation
  • Bangsbo, J., Mohr, M., & Krustrup, P. (2006). Physical and metabolic demands of training and match-play in the elite football player. Journal of Sports Sciences, 24(7), 665674. PubMed ID: 16766496 doi:10.1080/02640410500482529

    • Search Google Scholar
    • Export Citation
  • Bassini, A., Magalhaes-Neto, A.M., Sweet, E., Bottino, A., Veiga, C., Tozzi, M.B., … Cameron, L.C. (2013). Caffeine decreases systemic urea in elite soccer players during intermittent exercise. Medicine & Science in Sports & Exercise, 45(4), 683690. PubMed ID: 23135367 doi:10.1249/MSS.0b013e3182797637

    • Search Google Scholar
    • Export Citation
  • Bloms, L.P., Fitzgerald, J.S., Short, M.W., & Whitehead, J.R. (2016). The effects of caffeine on vertical jump height and execution in collegiate athletes. The Journal of Strength and Conditioning Research, 30(7), 18551861. PubMed ID: 26626028 doi:10.1519/JSC.0000000000001280

    • Search Google Scholar
    • Export Citation
  • Carr, A., Dawson, B., Schneiker, K., Goodman, C., & Lay, B. (2008). Effect of caffeine supplementation on repeated sprint running performance. The Journal of Sports Medicine and Physical Fitness, 48(4), 472478. PubMed ID: 18997650

    • Search Google Scholar
    • Export Citation
  • Castagna, C., Impellizzeri, F., Cecchini, E., Rampinini, E., & Alvarez, J.C. (2009). Effects of intermittent-endurance fitness on match performance in young male soccer players. The Journal of Strength and Conditioning Research, 23(7), 19541959. PubMed ID: 19855318 doi:10.1519/JSC.0b013e3181b7f743

    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York, NY: Academic Press.

  • Davis, J.M., Zhao, Z., Stock, H.S., Mehl, K.A., Buggy, J., & Hand, G.A. (2003). Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284(2), 399404. PubMed ID: 12399249 doi:10.1152/ajpregu.00386.2002

    • Search Google Scholar
    • Export Citation
  • Del Coso, J., Muñoz, G., & Muñoz-Guerra, J. (2011). Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Applied Physiology, Nutrition, and Metabolism, 36(4), 555561. PubMed ID: 21854160 doi:10.1139/h11-052

    • Search Google Scholar
    • Export Citation
  • Del Coso, J., Muñoz-Fernández, V.E., Muñoz, G., Fernández-Elías, V.E., Ortega, J.F., Hamouti, N., … Muñoz-Guerra, J. (2012). Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE, 7(2), e31380. doi:10.1371/journal.pone.0031380

    • Search Google Scholar
    • Export Citation
  • Duncan, M.J., Thake, C.D., & Downs, P.J. (2014). Effect of caffeine ingestion on torque and muscle activity during resistance exercise in men. Muscle & Nerve, 50(4), 523527. PubMed ID: 24435882 doi:10.1002/mus.24179

    • Search Google Scholar
    • Export Citation
  • Foskett, A., Ali, A., & Gant, N. (2009). Caffeine enhances cognitive function and skill performance during simulated soccer activity. International Journal of Sport Nutrition and Exercise Metabolism, 19(4), 410423. PubMed ID: 19827465 doi:10.1123/ijsnem.19.4.410

    • Search Google Scholar
    • Export Citation
  • Ganio, M.S., Klau, J.F., Casa, D.J., Armstrong, L.E., & Maresh, C.M. (2009). Effect of caffeine on sport-specific endurance performance: A systematic review. The Journal of Strength and Conditioning Research, 23(1), 315324. PubMed ID: 19077738 doi:10.1519/JSC.0b013e31818b979a

    • Search Google Scholar
    • Export Citation
  • Gant, N., Ali, A., & Foskett, A. (2010). The influence of caffeine and carbohydrate coingestion on simulated soccer performance. International Journal of Sport Nutrition and Exercise Metabolism, 20(3), 191197. PubMed ID: 20601736 doi:10.1123/ijsnem.20.3.191

    • Search Google Scholar
    • Export Citation
  • Hulse, M., Morris, J., Hawkins, R., Hodson, A., Nevill, A.M., & Nevill, M. (2013). A field-test battery for elite, young soccer players. International Journal of Sports Medicine, 34(04), 302311.

    • Search Google Scholar
    • Export Citation
  • Jordan, J.B., Korgaokar, A., Farley, R.S., Coons, J.M., & Caputo, J.L. (2014). Caffeine supplementation and reactive agility in elite youth soccer players. Pediatric Exercise Science, 26(2), 168176. PubMed ID: 24277927 doi:10.1123/pes.2013-0134

    • Search Google Scholar
    • Export Citation
  • Kamimori, G.H., Karyekar, C.S., Otterstetter, R., Cox, D.S., Balkin, T.J., Belenky, G.L., & Eddington, N.D. (2002). The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. International Journal of Pharmaceutics, 234(1–2), 159167. doi:10.1016/S0378-5173(01)00958-9

    • Search Google Scholar
    • Export Citation
  • Krustrup, P., Mohr, M., Amstrup, T., Rysgaard, T., Johansen, J., Steensberg, A., … Bangsbo, J. (2003). The yo-yo intermittent recovery test: Physiological response, reliability, and validity. Medicine & Science in Sports & Exercise, 35(4), 697705. PubMed ID: 12673156 doi:10.1249/01.MSS.0000058441.94520.32

    • Search Google Scholar
    • Export Citation
  • Lara, B., Gonzalez-Millán, C., Salinero, J.J., Abian-Vicen, J., Areces, F., Barbero-Alvarez, J.C., … Del Coso, J. (2014). Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids, 46(5), 13851392. PubMed ID: 24615239 doi:10.1007/s00726-014-1709-z

    • Search Google Scholar
    • Export Citation
  • Magkos, F., & Kavouras, S.A. (2005). Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Critical Reviews in Food Science and Nutrition, 45(7–8), 535562. PubMed ID: 16371327 doi:10.1080/1040-830491379245

    • Search Google Scholar
    • Export Citation
  • Markovic, G., Dizdar, D., Jukic, I., & Cardinale, M. (2004). Reliability and factorial validity of squat and countermovement jump tests. The Journal of Strength and Conditioning Research, 18(3), 551555. PubMed ID: 15320660

    • Search Google Scholar
    • Export Citation
  • McLellan, T.M., Kamimori, G.H., Voss, D.M., Bell, D.G., Cole, K.G., & Johnson, D. (2005). Caffeine maintains vigilance and improves run times during night operations for Special Forces. Aviation, Space, and Environmental Medicine, 76(7), 647654. PubMed ID: 16018347

    • Search Google Scholar
    • Export Citation
  • Mohr, M., Nielsen, J.J., & Bangsbo, J. (2011). Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. Journal of Applied Physiology, 111(5), 13721379. doi:10.1152/japplphysiol.01028.2010

    • Search Google Scholar
    • Export Citation
  • Oberlin-Brown, K.T., Siegel, R., Kilding, A.E., & Laursen, P.B. (2016). Oral presence of carbohydrate and caffeine in chewing gum: Independent and combined effects on endurance cycling performance. International Journal of Sports Physiology and Performance, 11(2), 164171. PubMed ID: 26114997 doi:10.1123/ijspp.2015-0133

    • Search Google Scholar
    • Export Citation
  • Russell, M., & Kingsley, M. (2014). The efficacy of acute nutritional interventions on soccer skill performance. Sports Medicine, 44(7), 957970. PubMed ID: 24728928 doi:10.1007/s40279-014-0184-8

    • Search Google Scholar
    • Export Citation
  • Ryan, E.J., Kim, C.H., Fickes, E.J., Williamson, M., Muller, M.D., Barkley, J.E., … Glickman, E.L. (2013). Caffeine gum and cycling performance: A timing study. The Journal of Strength and Conditioning Research, 27(1), 259264. PubMed ID: 22476164 doi:10.1519/JSC.0b013e3182541d03

    • Search Google Scholar
    • Export Citation
  • Santos, V.G., Santos, V.R., Felippe, L.J., Almeida, J.W., Jr., Bertuzzi, R., Kiss, M.A., & Lima-Silva, A.E. (2014). Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo. Nutrients, 6(2), 637649. PubMed ID: 24518826 doi:10.3390/nu6020637

    • Search Google Scholar
    • Export Citation
  • Schneiker, K.T., Bishop, D., Dawson, B., & Hackett, L.P. (2006). Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Medicine & Science in Sports & Exercise, 38(3), 578585. PubMed ID: 16540848 doi:10.1249/01.mss.0000188449.18968.62

    • Search Google Scholar
    • Export Citation
  • Spriet, L.L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine, 44(2), 175184. doi:10.1007/s40279-014-0257-8

    • Search Google Scholar
    • Export Citation
  • Timmins, T.D., & Saunders, D.H. (2014). Effect of caffeine ingestion on maximal voluntary contraction strength in upper- and lower-body muscle groups. The Journal of Strength and Conditioning Research, 28(11), 32393244. PubMed ID: 25144133 doi:10.1519/JSC.0000000000000447

    • Search Google Scholar
    • Export Citation
  • Turner, A., Walker, S., Stembridge, M., Coneyworth, P., Reed, G., Birdsey, L., … Moody, J. (2011). A testing battery for the assessment of fitness in soccer players. Strength and Conditioning Journal, 33(5), 2939. doi:10.1519/SSC.0b013e31822fc80a

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4788 1690 51
Full Text Views 260 34 1
PDF Downloads 181 41 2