Longitudinal Changes in Body Composition Assessed Using DXA and Surface Anthropometry Show Good Agreement in Elite Rugby Union Athletes

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Rugby union athletes have divergent body composition based on the demands of their on-field playing position and ethnicity. With an established association between physique traits and positional requirements, body composition assessment is routinely undertaken. Surface anthropometry and dual-energy X-ray absorptiometry (DXA) are the most common assessment techniques used, often undertaken synchronously. This study aims to investigate the association between DXA and surface anthropometry when assessing longitudinal changes in fat-free mass (FFM) and fat mass (FM) in rugby union athletes. Thirty-nine elite male rugby union athletes (age: 25.7 ± 3.1 years, stature: 187.6 ± 7.7 cm, and mass: 104.1 ± 12.2 kg) underwent assessment via DXA and surface anthropometry multiple times over three consecutive international seasons. Changes in the lean mass index, an empirical measure to assess proportional variation in FFM, showed large agreement with changes in DXA FFM (r = .54, standard error of the estimate = 1.5%, p < .001); the strength of association was stronger among forwards (r = .63) compared with backs (r = .38). Changes in the sum of seven skinfolds showed very large agreement with changes in DXA FM (r = .73, standard error of the estimate = 5.8%, p < .001), with meaningful differences observed regardless of ethnicity (Whites: r = .75 and Polynesians: r = .62). The lean mass index and sum of seven skinfolds were able to predict the direction of change in FFM and FM 86% and 91% of the time, respectively, when DXA change was >1 kg. Surface anthropometry measures provide a robust indication of the direction of change in FFM and FM, although caution may need to be applied when interpreting magnitude of change, particularly with FM.

Zemski and Slater are with the School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia. Keating is with the School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Australia. Broad is with U.S. Paralympics, United States Olympic Committee, Chula Vista, CA.

Address author correspondence to Adam J. Zemski at ajz006@student.usc.edu.au.
  • Ackland, T.R., Lohman, T.G., Sundgoy-Borgen, J., Maughan, R.J., Meyer, N.L., Stewart, A.D., & Muller, W. (2012). Current status of body composition assessment in sport. Sports Medicine, 42, 227–249. PubMed ID: 22303996 doi:10.2165/11597140-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, D., Gabbett, T., & Jenkins, D. (2011). The physical demands of super 14 rugby union. Journal of Science and Medicine in Sport, 14, 259–263. PubMed ID: 21324741 doi:10.1016/j.jsams.2011.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., Oldroyd, B., Smith, D., Lees, M., Brightmore, A., Till, K., … Hind, K. (2015). Precision error in dual-energy X-ray absorptiometry body composition measurements in elite rugby league players. Journal of Clinical Densitometry, 18, 546–550. PubMed ID: 26072358 doi:10.1016/j.jocd.2015.04.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bilsborough, J.C., Greenway, K., Opar, D., Livingstone, S., Cordy, J., & Coutts, A.J. (2014). The accuracy and precision of DXA for assessing body composition in team sport athletes. Journal of Sports Sciences, 32, 1821–1828. PubMed ID: 24914773 doi:10.1080/02640414.2014.926380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camhi, S.M., Bray, G.A., Bouchard, C., Greenway, F.L., Johnson, W.D., Newton, R.L., … Katzmarzyk, P.T. (2011). The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: Sex and race differences. Obesity, 19, 402–408. doi:10.1038/oby.2010.248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, B.R., Carter, J.E., Patterson, P., Petti, K., Orfanos, S.M., & Noffal, G.J. (1994). Physique and motor performance characteristics of US national rugby players. Journal of Sports Sciences, 12, 403–412. PubMed ID: 7932951 doi:10.1080/02640419408732187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, J.F., Chiapa, A.L., Rodriquez, M., Phelps, D.R., Cardarelli, K.M., Vishwanatha, J.K., … Cardarelli, R. (2008). Visceral fat, waist circumference, and BMI: Impact of race/ethnicity. Obesity, 16, 600–607. doi:10.1038/oby.2007.92

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, P., Halavatau, V., Comino, E., & Caterson, I. (2001). Differences in body composition between Tongans and Australians: Time to rethink the healthy weight ranges? International Journal of Obesity and Related Metabolic Disorders, 25, 1806–1814. PubMed ID: 11781762 doi:10.1038/sj.ijo.0801822

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delaney, J.A., Thornton, H.R., Scott, T.J., Ballard, D.A., Duthie, G.M., Wood, L.G., & Dascombe, B.J. (2016). Validity of skinfold-based measures for tracking changes in body composition in professional rugby league players. International Journal of Sports Physiology and Performance, 11, 261–266. PubMed ID: 26217048 doi:10.1123/ijspp.2015-0244

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, D.A., Mc Geever, S., Collins, K.D., Quinn, C., McElhone, R., & Scott, M. (2014). The validity of commonly used adipose tissue body composition equations relative to dual energy X-ray absorptiometry (DXA) in Gaelic games players. International Journal of Sports Medicine, 35, 95–100. PubMed ID: 23900901

    • Search Google Scholar
    • Export Citation
  • Duthie, G., Pyne, D., & Hooper, S. (2003). Applied physiology and game analysis of rugby union. Sports Medicine, 33, 973–991. PubMed ID: 14606925 doi:10.2165/00007256-200333130-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duthie, G.M., Pyne, D.B., Hopkins, W.G., Livingstone, S., & Hooper, S.L. (2006). Anthropometry profiles of elite rugby players: Quantifying changes in lean mass. British Journal of Sports Medicine, 40, 202–207. PubMed ID: 16505074 doi:10.1136/bjsm.2005.019695

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, E.M., Rowe, D.A., Misic, M.M., Prior, B.M., & Arngrimsson, S.A. (2005). Skinfold prediction equations for athletes developed using a four-compartment model. Medicine & Science in Sports & Exercise, 37, 2006–2011. PubMed ID: 16286873 doi:10.1249/01.mss.0000176682.54071.5c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontana, F.Y., Colosio, A., De Roia, G., & Pogliaghi, S. (2015). Anthropometrics of Italian senior male rugby union players: From elite to second division. International Journal of Sports Physiology and Performance, 10, 674–680. PubMed ID: 25932593 doi:10.1123/ijspp.2015-0014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuller, C.W., Laborde, F., Leather, R.J., & Molloy, M.G. (2008). International Rugby Board Rugby World Cup 2007 injury surveillance study. British Journal of Sports Medicine, 42, 452–459. PubMed ID: 18539659 doi:10.1136/bjsm.2008.047035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hangartner, T.N., Warner, S., Braillon, P., Jankowski, L., & Shepherd, J. (2013). The official positions of the International Society of Clinical Densitometry: Acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. Journal of Clinical Densitometry, 16, 520–536. PubMed ID: 24183641 doi:10.1016/j.jocd.2013.08.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, W.G. (2006). Spreadsheets for analysis of controlled trials with adjustment for a predictor. Sportscience, 10, 46–50.

  • Katzmarzyk, P.T., Bray, G.A., Greenway, F.L., Johnson, W.D., Newton, R.L., Jr., Ravussin, E., … Bouchard, C. (2010). Racial differences in abdominal depot-specific adiposity in white and African American adults. American Journal of Clinical Nutrition, 91, 7–15. PubMed ID: 19828714 doi:10.3945/ajcn.2009.28136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, A., Slater, G.J., & Byrne, N. (2017). Impact of food and fluid intake on technical and biological measurement error in body composition assessment methods in athletes. British Journal of Nutrition, 117, 591–601. PubMed ID: 28382898 doi:10.1017/S0007114517000551

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lees, M.J., Oldroyd, B., Jones, B., Brightmore, A., O’Hara, J.P., Barlow, M.J., … Hind, K. (2017). Three-compartment body composition changes in professional rugby union players over one competitive season: A team and individual approach. Journal of Clinical Densitometry, 20, 50–57. PubMed ID: 27161801 doi:10.1016/j.jocd.2016.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, N.L., Sundgot-Borgen, J., Lohman, T.G., Ackland, T.R., Stewart, A.D., Maughan, R.J., … Muller, W. (2013). Body composition for health and performance: A survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on body composition, health and performance under the auspices of the IOC medical commission. British Journal of Sports Medicine, 47, 1044–1053. PubMed ID: 24065075 doi:10.1136/bjsports-2013-092561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nana, A., Salter, G.J., Stewart, A.D., & Burke, L.M. (2015). Methodology review: Using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. International Journal of Sport Nutrition and Exercise Metabolism, 25, 198–215. PubMed ID: 25029265 doi:10.1123/ijsnem.2013-0228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Health and Nutrition Examination Survey. (2011). Body composition procedures manual. Atlanta, GA: Centers for Disease Control and Prevention. Retrieved from www.cdc.gov/nchs/data/nhanes/nhanes_11_12/Body_Composition_Procedures_Manual.pdf

    • Search Google Scholar
    • Export Citation
  • Norton, K., Whittingham, N., Carter, L., Kerr, D., Gore, C., & Marfell-Jones, M. (2006). The anthropometric profile. In K. Norton & T. Olds (Eds.), Anthropmetrica (pp. 25–75). Marrickville, Australia: Southwood Press.

    • Search Google Scholar
    • Export Citation
  • Orchard, J.W., Reed, J.W., & Anderson, I.F. (2005). The use of diagnostic imaging in sports medicine. Medical Journal of Australia, 9, 482–486.

    • Search Google Scholar
    • Export Citation
  • Prior, B.M., Modlesky, C.M., Evans, E.M., Sloniger, M.A., Saunders, M.J., Lewis, R.D., & Cureton, K.J. (2001). Muscularity and the density of the fat-free mass in athletes. Journal of Applied Physiology, 90, 1523–1531. PubMed ID: 11247955 doi:10.1152/jappl.2001.90.4.1523

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quarrie, K.L., & Wilson, B.D. (2000). Force production in the rugby union scrum. Journal of Sports Sciences, 18, 237–246. PubMed ID: 10824640 doi:10.1080/026404100364974

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reilly, T., George, K., Marfell-Jones, M., Scott, M., Sutton, L., & Wallace, J.A. (2009). How well do skinfold equations predict percent body fat in elite soccer players? International Journal of Sports Medicine, 30, 607–613. doi:10.1055/s-0029-1202353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reilly, T., Maughan, R.J., & Hardy, L. (1996). Body fat consensus statement of the steering groups of the British Olympic Association. Sports Exercise and Injury, 2, 46–49.

    • Search Google Scholar
    • Export Citation
  • Rush, E., Plank, L., Chandu, V., Laulu, M., Simmons, D., Swinburn, B., & Yajnik, C. (2004). Body size, body composition, and fat distribution: A comparison of young New Zealand men of European, Pacific Island, and Asian Indian ethnicities. New Zealand Medical Journal, 117, 1203. PubMed ID: 15608799

    • Search Google Scholar
    • Export Citation
  • Rush, E.C., Freitas, I., & Plank, L.D. (2009). Body size, body composition and fat distribution: Comparative analysis of European, Maori, Pacific Island and Asian Indian adults. British Journal of Nutrition, 102, 632–641. PubMed ID: 19203416 doi:10.1017/S0007114508207221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, A.M., Fields, D.A., Quiterio, A.L., & Sardinha, L.B. (2009). Are skinfold-based models accurate and suitable for assessing changes in body composition in highly trained athletes? Journal of Strength and Conditioning Research, 23, 1688–1696. PubMed ID: 19675495 doi:10.1519/JSC.0b013e3181b3f0e4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, G.J., Duthie, G.M., Pyne, D.B., & Hopkins, W.G. (2006). Validation of a skinfold based index for tracking proportional changes in lean mass. British Journal of Sports Medicine, 40, 208–213. PubMed ID: 16505075 doi:10.1136/bjsm.2005.019794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinburn, B.A., Craig, P.L., Daniel, R., Dent, D.P., & Strauss, B.J. (1996). Body composition differences between Polynesians and Caucasians assessed by bioelectrical impedance. International Journal of Obesity and Related Metabolic Disorders, 20, 889–894. PubMed ID: 8910091

    • Search Google Scholar
    • Export Citation
  • Toombs, R.J., Ducher, G., Shepherd, J.A., & De Souza, M.J. (2012). The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity, 20, 30–39. doi:10.1038/oby.2011.211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Der Ploeg, G.E., Withers, R.T., & Laforgia, J. (2003). Percent body fat via DEXA: Comparison with a four-compartment model. Journal of Applied Physiology, 94, 499–506. PubMed ID: 12531910 doi:10.1152/japplphysiol.00436.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Marken Lichtenbelt, W., Hartgens, F., Vollaard, N., Ebbing, S., & Kuipers, H. (2004). Body composition changes in bodybuilders: A method comparison. Medicine & Science in Sports & Exercise, 36, 490–497. PubMed ID: 15076792 doi:10.1249/01.MSS.0000117159.70295.73

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, J.E., Wells, J.C., Wilson, C.M., Haroun, D., Lucas, A., & Fewtrell, M.S. (2006). Evaluation of lunar prodigy dual-energy X-ray absorptiometry for assessing body composition in healthy persons and patients by comparison with the criterion 4-component model. American Journal of Clinical Nutrition, 83, 1047–1054. PubMed ID: 16685045 doi:10.1093/ajcn/83.5.1047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemski, A.J., Broad, E.M., & Slater, G.J. (2018). Skinfold prediction equations fail to provide an accurate estimate of body composition in elite rugby union athletes of Caucasian and Polynesian ethnicity. International Journal of Sport Nutrition and Exercise Metabolism, 28, 90–99. PubMed ID: 29035601 doi:10.1123/ijsnem.2017-0251

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemski, A.J., Slater, G.J., & Broad, E.M. (2015). Body composition characteristics of elite Australian rugby union athletes according to playing position and ethnicity. Journal of Sports Sciences, 33, 970–978. PubMed ID: 25553727 doi:10.1080/02640414.2014.977937

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 352 352 36
Full Text Views 21 21 2
PDF Downloads 14 14 0