Sucrose and Sodium but not Caffeine Content Influence the Retention of Beverages in Humans Under Euhydrated Conditions

Click name to view affiliation

Ronald J. Maughan Loughborough University

Search for other papers by Ronald J. Maughan in
Current site
Google Scholar
PubMed
Close
*
,
Phillip Watson Loughborough University

Search for other papers by Phillip Watson in
Current site
Google Scholar
PubMed
Close
*
,
Philip A.A. Cordery Loughborough University

Search for other papers by Philip A.A. Cordery in
Current site
Google Scholar
PubMed
Close
*
,
Neil P. Walsh Bangor University

Search for other papers by Neil P. Walsh in
Current site
Google Scholar
PubMed
Close
*
,
Samuel J. Oliver Bangor University

Search for other papers by Samuel J. Oliver in
Current site
Google Scholar
PubMed
Close
*
,
Alberto Dolci Bangor University

Search for other papers by Alberto Dolci in
Current site
Google Scholar
PubMed
Close
*
,
Nidia Rodriguez-Sanchez University of Stirling

Search for other papers by Nidia Rodriguez-Sanchez in
Current site
Google Scholar
PubMed
Close
*
, and
Stuart D.R. Galloway University of Stirling

Search for other papers by Stuart D.R. Galloway in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study systematically examined the influence of carbohydrate (sucrose), sodium, and caffeine on the fluid retention potential of beverages under euhydrated conditions, using the beverage hydration index method. Three cohorts, each of 12 young, healthy, active men, ingested 1 L of beverages containing four different concentrations of a single component (sucrose, sodium, or caffeine) in a double-blind, crossover manner. Urine output was collected for the subsequent 4 hr. Cumulative urine output was lower and net fluid balance was higher after 10 and 20% sucrose beverages than 0 and 5% sucrose beverages (p < .05), and after 27 and 52 mmol/L sodium beverages than 7 and 15 mmol/L sodium beverages (p < .05). No difference in urine output or net fluid balance was apparent following ingestion of caffeine at concentrations of 0–400 mg/L (p = .83). Consequently, the calculated beverage hydration index was greater in beverages with higher sucrose or sodium content, but caffeine had no effect. No difference was observed in arginine vasopressin or aldosterone between any trials. These data highlight that the key drivers promoting differences in the fluid retention potential of beverages when euhydrated are energy density, likely through slowed fluid delivery to the circulation (carbohydrate content effect), or electrolyte content through improved fluid retention (sodium content effect). These data demonstrate that beverage carbohydrate and sodium content influence fluid delivery and retention in the 4 hr after ingestion, but caffeine up to 400 mg/L does not. Athletes and others can use this information to guide their daily hydration practices.

Maughan, Watson, and Cordery are with the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom. Walsh, Oliver, and Dolci are with the School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom. Rodriguez-Sanchez and Galloway are with Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom.

Address author correspondence to Stuart D.R. Galloway at s.d.r.galloway@stir.ac.uk.
  • Collapse
  • Expand
  • Armstrong, L.E., Pumerantz, A.C., Roti, M.W., Judelson, D.A., Watson, G., Dias, J.C., . . . Kellogg, M. (2005). Fluid, electrolyte, and renal indices of hydration during 11 days of controlled caffeine consumption. International Journal of Sport Nutrition and Exercise Metabolism, 15(3), 252265. PubMed ID: 16131696 doi:10.1123/ijsnem.15.3.252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourque, C.W. (2008). Central mechanisms of osmosensation and systemic osmoregulation. Nature Reviews Neuroscience, 9, 519531. PubMed ID: 18509340 doi:10.1038/nrn2400

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calbet, J.A., & Holst, J.J. (2004). Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. European Journal of Nutrition, 43(3), 127139. PubMed ID: 15168035 doi:10.1007/s00394-004-0448-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. doi:10.4324/9780203771587

  • Costill, D.L., & Saltin, B. (1974). Factors limiting gastric emptying during rest and exercise. Journal of Applied Physiology, 37(5), 679683. PubMed ID: 4436193 doi:10.1152/jappl.1974.37.5.679

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gisolfi, C.V., Summers, R.W., Schedl, H.P., & Bleiler, T.L. (1992). Intestinal water absorption from select carbohydrate solutions in humans. Journal of Applied Physiology, 73(5), 21422150. PubMed ID: 1474096 doi:10.1152/jappl.1992.73.5.2142

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heer, M., Baisch, F., Kropp, J., Gerzer, R., & Drummer, C. (2000). High dietary sodium chloride consumption may not induce body fluid retention in humans. American Journal of Physiology-Renal Physiology, 278(4), 585595. PubMed ID: 10751219 doi:10.1152/ajprenal.2000.278.4.F585

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, D.T., Godfredsen, K.A., Page, T., & Connor, J.D. (1998). Simple high-performance liquid chromatography method for the simultaneous determination of serum caffeine and paraxanthine following rapid sample preparation. Journal of Chromatography B: Biomedical Sciences and Applications, 707(1-2), 105110. PubMed ID: 9613939 doi:10.1016/s0378-4347(97)00590-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J.B., Elliott, E.J., Fairclough, P.D., Clark, M.L., & Farthing, M.J. (1992). Water and solute absorption from hypotonic glucose-electrolyte solutions in human jejunum. Gut, 33(4), 479483. PubMed ID: 1582591 doi:10.1136/gut.33.4.479

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J.N., & Macdonald, I. (1954). The influence of volume on gastric emptying. The Journal of Physiology, 126(3), 459474. PubMed ID: 13222350 doi:10.1113/jphysiol.1954.sp005222

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J.N., & Pathak, J.D. (1960). The osmotic effects of some simple molecules and ions on gastric emptying. The Journal of Physiology, 154(2), 254269. PubMed ID: 16992067 doi:10.1113/jphysiol.1960.sp006577

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J.N., & Stubbs, D.F. (1975). The volume and energy content of meals as determinants of gastric emptying. The Journal of Physiology, 245(1), 209225. PubMed ID: 1127608 doi:10.1113/jphysiol.1975.sp010841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killer, S.C., Blannin, A.K., & Jeukendrup, A.E. (2014). No evidence of dehydration with moderate daily coffee intake: A counterbalanced cross-over study in a free-living population. PLoS ONE, 9(1), e84154. PubMed ID: 24416202 doi:10.1371/journal.pone.0084154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leiper, J.B. (2015). Fate of ingested fluids: Factors affecting gastric emptying and intestinal absorption of beverages in humans. Nutrition Reviews, 73(Suppl. 2), 5772. doi:10.1093/nutrit/nuv032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan-Sprenger, H.M., & Spriet, L.L. (2013). The acute effects of fluid intake on urine specific gravity and fluid retention in a mildly dehydrated state. The Journal of Strength and Conditioning Research, 27(4), 10021008. PubMed ID: 22692114 doi:10.1519/JSC.0b013e31826052c7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahe, S., Huneau, J.F., Marteau, P., Thuillier, F., & Tome, D. (1992). Gastroileal nitrogen and electrolyte movements after bovine milk ingestion in humans. The American Journal of Clinical Nutrition, 56(2), 410416. PubMed ID: 1636619

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marr, J.W. (1971). Individual dietary surveys: Purposes and methods. World Review of Nutrition and Dietetics, 13, 105164. PubMed ID: 4935603 doi:10.1159/000391884

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J., & Griffin, J. (2003). Caffeine ingestion and fluid balance: A review. Journal of Human Nutrition and Dietetics, 16(6), 411420. PubMed ID: 19774754 doi:10.1046/j.1365-277x.2003.00477.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J., Watson, P., Cordery, P.A., Walsh, N.P., Oliver, S.J., Dolci, A., . . . Galloway, S.D.R. (2016). A randomized trial to assess the potential of different beverages to affect hydration status: Development of a beverage hydration index. The American Journal of Clinical Nutrition, 103(3), 717723. PubMed ID: 26702122 doi:10.3945/ajcn.115.114769

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neuhauser, B., Beine, S., Verwied, S.C., & Luhrmann, P.M. (1997). Coffee consumption and total body water homeostasis as measured by fluid balance and bioelectrical impedance analysis. Annals of Nutrition & Metabolism, 41(1), 2936. doi:10.1159/000177975

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passmore, A.P., Kondowe, G.B., & Johnston, G.D. (1987). Renal and cardiovascular effects of caffeine: A dose–response study. Clinical Science, 72(6), 749756. PubMed ID: 3297472 doi:10.1042/cs0720749

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, S.F., & Summerskill, W.H. (1967). Water and electrolyte transport during maintenance of isotonicity in human jejunum and ileum. The Journal of Laboratory and Clinical Medicine, 70(4), 686698. PubMed ID: 6052969

    • Search Google Scholar
    • Export Citation
  • Roti, M.W., Casa, D.J., Pumerantz, A.C., Watson, G., Dias, J.C., Ruffin, K., & Armstrong, L.E. (2006). Thermoregulatory responses to exercise in the heat: Chronic caffeine intake has no effect. Aviation, Space, and Environmental Medicine, 77(2), 124129. PubMed ID: 16491580

    • Search Google Scholar
    • Export Citation
  • Schedl, H.P., & Clifton, J.A. (1963). Solute and water absorption by the human small intestine. Nature, 199, 12641267. PubMed ID: 14074590 doi:10.1038/1991264a0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schedl, H.P., Maughan, R.J., & Gisolfi, C.V. (1994). Intestinal absorption during rest and exercise: implications for formulating an oral rehydration solution (ORS). Medicine and Science in Sports and Exercise, 26(Pt. 3), 267280. PubMed ID: 8183089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seal, A.D., Bardis, C.D., Gavrieli, A., Grigorakis, P., Adams, J.D., Arnaoutis, G., . . . Kavouras, S.A. (2017). Coffee with high but not low caffeine content augments fluid and electrolyte excretion at rest. Frontiers in Nutrition, 4, 40. doi:10.3389/fnut.2017.00040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., Summers, R.W., Schedl, H.P., Flanagan, S.W., Chang, R., & Gisolfi, C.V. (1995). Effects of carbohydrate type and concentration and solution osmolality on water absorption. Medicine & Science in Sports & Exercise, 27(12), 16071615. PubMed ID: 8614315 doi:10.1249/00005768-199512000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirley, D.G., Walter, S.J., & Noormohamed, F.H. (2002). Natriuretic effect of caffeine: Assessment of segmental sodium reabsorption in humans. Clinical Science, 103(5), 461466. PubMed ID: 12401118 doi:10.1042/cs1030461

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirreffs, S.M., & Maughan, R.J. (1997). Restoration of fluid balance after exercise-induced dehydration: Effects of alcohol consumption. Journal of Applied Physiology, 83(4), 11521158. PubMed ID: 9338423 doi:10.1152/jappl.1997.83.4.1152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirreffs, S.M., & Maughan, R.J. (2000). Rehydration and recovery of fluid balance after exercise. Exercise and Sport Sciences Reviews, 28(1), 2732. PubMed ID: 11131686

    • Search Google Scholar
    • Export Citation
  • Sollanek, K.J., Tsurumoto, M.T., Vidyasagar, S., Kenefick, R.W., & Cheuvront, S.N. (2018). Neither body mass nor sex influences beverage hydration index outcomes during randomized trial when comparing 3 commercial beverages. The American Journal of Clinical Nutrition, 107, 544549. PubMed ID: 29635499 doi:10.1093/ajcn/nqy005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanhewicz, A.E., & Kenney, W.L. (2015). Determinants of water and sodium intake and output. Nutrition Reviews, 73(Suppl. 2), 7382. doi:10.1093/nutrit/nuv033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vist, G.E., & Maughan, R.J. (1994). Gastric-emptying of ingested solutions in man: Effect of beverage glucose concentration. Medicine & Science in Sports & Exercise, 26(10), 12691273. PubMed ID: 7799770 doi:10.1249/00005768-199410000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vist, G.E., & Maughan, R.J. (1995). The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. The Journal of Physiology, 486(Pt. 2), 523531. doi:10.1113/jphysiol.1995.sp020831

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6083 1807 859
Full Text Views 237 59 1
PDF Downloads 204 38 0