Accurate Prediction Equation to Assess Body Fat in Male and Female Adolescent Football Players

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The aims of this study were (a) to determine which of the most used anthropometric equations was the most accurate to estimate percentage of body fat (%BF), (b) to develop a new specific anthropometric equation, and (c) to validate this football-specific equation. A total of 126 (13.3 ± 0.6 years) football players (86 males and 40 females) participated in the present study. Participants were divided into two groups: 98 players were included in the assessment of existing equations and in the development of the new prediction equation, and 28 players were used to validate it. %BF was measured with dual-energy X-ray absorptiometry (DXA) and also estimated with six different %BF anthropometric equations: Johnston, Slaughter, Carter, Faulkner, Deurenberg, and Santi-Maria. Paired t tests were used to analyze differences between methods. A football-specific equation was developed by a stepwise linear regression. The existing anthropometric equations showed significant bias for %BF when compared with DXA (p < .001; constant error ranged from −4.57% to 9.24%; standard error of estimate ranged from 2.46 to 4.20). On the other hand, the developed football-specific equation was %BF = 11.115 + 0.775 (triceps skinfold) + 0.193 (iliac crest skinfold) − 1.606 (sex). The developed equation demonstrated neither %BF differences (p = .121; constant error = 0.57%; standard error of estimate = 0.36) when compared with DXA, presenting a high cross-validation prediction power (R 2 = .85). Published anthropometric equations were not accurate to estimate %BF in adolescent football players. Due to the fact that the developed football-specific equation showed neither differences nor heteroscedasticity when compared with DXA, this equation is recommended to assess %BF in adolescent football players.

Lozano-Berges, Matute-Llorente, Gómez-Bruton, González-Agüero, Vicente-Rodríguez, and Casajús are with GENUD (Growth, Exercise, NUtrition and Development) Research Group, Universidad de Zaragoza, Zaragoza, Spain. Lozano-Berges, Matute-Llorente, González-Agüero, and Vicente-Rodríguez are with the Dept. of Physiatry and Nursing, Faculty of Health and Sport Sciences (FCSD), Universidad de Zaragoza, Huesca, Spain. Lozano-Berges, Matute-Llorente, Gómez-Bruton, González-Agüero, Vicente-Rodríguez, and Casajús are with the Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain. Lozano-Berges, Matute-Llorente, Gómez-Bruton, González-Agüero, Vicente-Rodríguez, and Casajús are with the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain. Casajús is also with the Dept. of Physiatry and Nursing, Faculty of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain.

Address author correspondence to José A. Casajús at joseant@unizar.es.
  • Avlonitou, E., Georgiou, E., Douskas, G., & Louizi, A. (1997). Estimation of body composition in competitive swimmers by means of three different techniques. International Journal of Sports Medicine, 18(5), 363–368. PubMed ID: 9298777 doi:10.1055/s-2007-972647

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, J. (1982). Body composition of Montreal Olympic athletes. In J.E.L. Carter (Ed.), Physical structure of Olympic athletes (pp. 81–106). Basel, Switzerland: Karger.

    • Search Google Scholar
    • Export Citation
  • Dellagrana, R.A., Guglielmo, L.G., Santos, B.V., Hernandez, S.G., da Silva, S.G., & de Campos, W. (2015). Physiological, anthropometric, strength, and muscle power characteristics correlates with running performance in young runners. Journal of Strength and Conditioning Research, 29(6), 1584–1591. PubMed ID: 26010795 doi:10.1519/JSC.0000000000000784

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lorenzo, A., Bertini, I., Candeloro, N., Iacopino, L., Andreoli, A., & Van Loan, M.D. (1998). Comparison of different techniques to measure body composition in moderately active adolescents. British Journal of Sports Medicine, 32(3), 215–219. PubMed ID: 9773169 doi:10.1136/bjsm.32.3.215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deurenberg, P., Weststrate, J.A., & Seidell, J.C. (1991). Body mass index as a measure of body fatness: Age- and sex-specific prediction formulas. British Journal of Nutrition, 65(2), 105–114. PubMed ID: 2043597 doi:10.1079/BJN19910073

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenmann, J.C., Heelan, K.A., & Welk, G.J. (2004). Assessing body composition among 3- to 8-year-old children: Anthropometry, BIA, and DXA. Obesity Research, 12(10), 1633–1640. PubMed ID: 15536227 doi:10.1038/oby.2004.203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falk, B., Braid, S., Moore, M., Yao, M., Sullivan, P., & Klentrou, N. (2010). Bone properties in child and adolescent male hockey and soccer players. Journal of Science and Medicine in Sport, 13(4), 387–391. PubMed ID: 19574094 doi:10.1016/j.jsams.2009.03.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faulkner, J.A. (1968). Physiology of swimming and diving. In H. Falls (Ed.), Exercise physiology (pp. 415–446). Baltimore, MD: Academic Press.

    • Search Google Scholar
    • Export Citation
  • Field, A. (2005). Discovering statistics using SPSS. London, UK: Sage.

  • Fields, D.A., & Goran, M.I. (2000). Body composition techniques and the four-compartment model in children. Journal of Applied Physiology, 89(2), 613–620. PubMed ID: 10926645 doi:10.1152/jappl.2000.89.2.613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, W.G., Marshall, S.W., Batterham, A.M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3–13. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horner, K.M., Byrne, N.M., Cleghorn, G.J., & King, N.A. (2015). Influence of habitual physical activity on gastric emptying in healthy males and relationships with body composition and energy expenditure. British Journal of Nutrition, 114(3), 489–496. PubMed ID: 26168984 doi:10.1017/s0007114515002044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, J.L., Leong, M.S., Checkland, E.G., Zuberbuhler, P.C., Conger, P.R., & Quinney, H.A. (1988). Body fat assessed from body density and estimated from skinfold thickness in normal children and children with cystic fibrosis. The American Journal of Clinical Nutrition, 48(6), 1362–1366. PubMed ID: 3202085 doi:10.1093/ajcn/48.6.1362

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohman, T.G., Pollock, M.L., Slaughter, M.H., Brandon, L.J., & Boileau, R.A. (1984). Methodological factors and the prediction of body fat in female athletes. Medicine & Science in Sports & Exercise, 16(1), 92–96. PubMed ID: 6708788 doi:10.1249/00005768-198401000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marfell-Jones, M.J., Olds, T., Stewart, A.D., & Carter, L. (2006). International standards for anthropometric assessment. Adelaida, CA: International Society for the Advancement of Kinanthropometry.

    • Search Google Scholar
    • Export Citation
  • Nana, A., Slater, G.J., Stewart, A.D., & Burke, L.M. (2015). Methodology review: Using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. International Journal of Sport Nutrition and Exercise Metabolism, 25(2), 198–215. PubMed ID: 25029265 doi:10.1123/ijsnem.2013-0228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reilly, T., George, K., Marfell-Jones, M., Scott, M., Sutton, L., & Wallace, J.A. (2009). How well do skinfold equations predict percent body fat in elite soccer players? International Journal of Sports Medicine, 30(8), 607–613. PubMed ID: 19301213 doi:10.1055/s-0029-1202353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez, G., Moreno, L.A., Blay, M.G., Blay, V.A., Fleta, J., Sarria, A., . . . AVENA-Zaragoza Study Group. (2005). Body fat measurement in adolescents: Comparison of skinfold thickness equations with dual-energy X-ray absorptiometry. European Journal of Clinical Nutrition, 59(10), 1158–1166. PubMed ID: 16047030 doi:10.1038/sj.ejcn.1602226

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santi-Maria, T., Gómez Campos, R., Andruske, C.L., Gamero, D.H., Rocha, C.L., de Arruda, M., . . . Cossio-Bolaños, M. (2015). Percentage of body fat of young soccer players: Comparison of proposed regression frequencies between goalkeepers and soccer camp players. Journal of Exercise Physiology Online, 18(6), 70–80.

    • Search Google Scholar
    • Export Citation
  • Silva, A.M., Fields, D.A., & Sardinha, L.B. (2013a). A PRISMA-driven systematic review of predictive equations for assessing fat and fat-free mass in healthy children and adolescents using multicomponent molecular models as the reference method. Journal of Obesity, 2013, 148696. PubMed ID: 23844282 doi:10.1155/2013/148696

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, A.M., Minderico, C.S., Teixeira, P.J., Pietrobelli, A., & Sardinha, L.B. (2006). Body fat measurement in adolescent athletes: Multicompartment molecular model comparison. European Journal of Clinical Nutrition, 60(8), 955–964. PubMed ID: 16523205 doi:10.1038/sj.ejcn.1602405

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, D.R., Ribeiro, A.S., Pavao, F.H., Ronque, E.R., Avelar, A., Silva, A.M., & Cyrino, E.S. (2013b). Validity of the methods to assess body fat in children and adolescents using multi-compartment models as the reference method: A systematic review. Revista da Associacao Medica Brasileira, 59(5), 475–486. PubMed ID: 24119380 doi:10.1016/j.ramb.2013.03.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siri, W.E. (1961). Body composition from fluid spaces and density: Analysis of methods. In J. Brozek & A. Henschel (Eds.), Techniques for measuring body composition (pp. 223–234). Washington, DC: National Academy of Sciences.

    • Search Google Scholar
    • Export Citation
  • Slaughter, M.H., Lohman, T.G., Boileau, R.A., Horswill, C.A., Stillman, R.J., Van Loan, M.D., & Bemben, D.A. (1988). Skinfold equations for estimation of body fatness in children and youth. Human Biology, 60(5), 709–723. PubMed ID: 3224965

    • Search Google Scholar
    • Export Citation
  • Tanner, J.M., & Whitehouse, R.H. (1976). Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Archives of Disease in Childhood, 51(3), 170–179. PubMed ID: 952550 doi:10.1136/adc.51.3.170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valente-dos-Santos, J., Coelho-e-Silva, M.J., Duarte, J., Figueiredo, A.J., Liparotti, J.R., Sherar, L.B., . . . Malina, R.M. (2012). Longitudinal predictors of aerobic performance in adolescent soccer players. Medicina, 48(8), 410–416. PubMed ID: 23128461 doi:10.3390/medicina48080061

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., Tong, T.K., Qiu, W., Zhang, X., Zhou, S., Liu, Y., & He, Y. (2017). Comparable effects of high-intensity interval training and prolonged continuous exercise training on abdominal visceral fat reduction in obese young women. Journal of Diabetes Research, 2017, 5071740. PubMed ID: 28116314 doi:10.1155/2017/5071740

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 409 409 31
Full Text Views 20 20 0
PDF Downloads 11 11 0