Dietary Anthocyanins: A Review of the Exercise Performance Effects and Related Physiological Responses

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Foods and supplements high in anthocyanins are gaining popularity within sports nutrition. Anthocyanins are pigments within berries and other colorful fruits and vegetables. They have antioxidative and anti-inflammatory actions that improve recovery from exercise. Furthermore, anthocyanins can also affect vasoactive properties, including decreasing mean arterial blood pressure and increasing vasodilation during exercise. In vitro observations have shown anthocyanin- and metabolite-induced activation of endothelial nitric oxide synthase and human vascular cell migration. However, effects of anthocyanins on exercise performance without a prior muscle-damaging or metabolically demanding bout of exercise are less clear. For example, exercise performance effects have been observed for blackcurrant but are less apparent for cherry, therefore indicating that the benefits could be due to the specific source-dependent anthocyanins. The mechanisms by which anthocyanin intake can enhance exercise performance may include effects on blood flow, metabolic pathways, and peripheral muscle fatigue, or a combination of all three. This narrative review focuses on the experimental evidence for anthocyanins to improve exercise performance in humans.

Cook is with the School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom. Willems is with the Institute of Sport, University of Chichester, Chichester, United Kingdom.

Address author correspondence to Matthew David Cook at matthew.cook@worc.ac.uk.
  • Bell, P.G., Stevenson, E., Davison, G.W., & Howatson, G. (2016). The effects of Montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients, 8(7), 441. PubMed ID: 27455316 doi:10.3390/nu8070441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, P.G., Walshe, I.H., Davison, G.W., Stevenson, E., & Howatson, G. (2014). Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients 6(2), 829–843. PubMed ID: 24566440 doi:10.3390/nu6020829

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bell, P.G., Walshe, I.H., Davison, G.W., Stevenson, E.J., & Howatson, G. (2015). Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise. Applied Physiology, Nutrition, and Metabolism, 40(4), 414–423. doi:10.1139/apnm-2014-0244

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowtell, J.L., Sumners, D.P., Dyer, A., Fox, P., & Mileva, K.N. (2011). Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Medicine & Science in Sports & Exercise, 43(8), 1544–1551. PubMed ID: 21233776 doi:10.1249/MSS.0b013e31820e5adc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braakhuis, A.J. (2012). Effect of vitamin C supplements on physical performance. Current Sports Medicine Reports, 11(4), 180–184. PubMed ID: 22777327 doi:10.1249/JSR.0b013e31825e19cd

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braakhuis, A.J., Hopkins, W.G., & Lowe, T.E. (2014). Effects of dietary antioxidants on training and performance in female runners. European Journal of Sport Science, 14(2), 160–168. PubMed ID: 23600891 doi:10.1080/17461391.2013.785597

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bylund-Fellenius, A.C., Walker, P.M., Elander, A., Holm, S., Holm, J., & Scherstén, T. (1981). Energy metabolism in relation to oxygen partial pressure in human skeletal muscle during exercise. Biochemical Journal, 200(2), 247–255. PubMed ID: 7340832 doi:10.1042/bj2000247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassidy, A., Bertoia, M., Chiuve, S., Flint, A., Forman, J., & Rimm, E.B. (2016). Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. American Journal of Clinical Nutrition, 104(3), 587–594. PubMed ID: 27488237 doi:10.3945/ajcn.116.133132

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cimino, F., Speciale, A., Anwar, S., Canali, R., Ricciardi, E., Virgili, F., . . . Saija, A. (2013). Anthocyanins protect human endothelial cells from mild hyperoxia damage through modulation of Nrf2 pathway. Genes & Nutrition, 8(4), 391–399. PubMed ID: 23229494 doi:10.1007/s12263-012-0324-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clifford, T., Scott, A., & Mitchell, N. (2013). The influence of different sources of polyphenols on submaximal cycling and time trial performance. Journal of Athletic Enhancement, 2(6), S10.

    • Search Google Scholar
    • Export Citation
  • Connolly, D.A., McHugh, M.P., Padilla-Zakour, O.I., Carlson, L., & Sayers, S.P. (2006). Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. British Journal of Sports Medicine, 40(8), 679–683. PubMed ID: 16790484 doi:10.1136/bjsm.2005.025429

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Blacker, S.D., & Willems, M.E.T. (2015). New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. European Journal of Applied Physiology, 115(11), 2357–2365. PubMed ID: 26175097 doi:10.1007/s00421-015-3215-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Gault, M.L., Edwards, V.C., & Willems, M.E.T. (2017a). Dose effects of New Zealand blackcurrant on substrate oxidation and physiological responses during prolonged cycling. European Journal of Applied Physiology, 117(6), 1207–1216. doi:10.1007/s00421-017-3607-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Gault, M.L., & Willems, M.E.T. (2017b). Blackcurrant alters physiological responses and femoral artery diameter during sustained isometric contraction. Nutrients, 9(6), E556. PubMed ID: 28555052 doi:10.3390/nu9060556

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costill, D.L., Barnett, A., Sharp, R., Fink, W.J., & Katz, A. (1983). Leg muscle pH following sprint running. Medicine & Science in Sports & Exercise, 15(4), 325–329. PubMed ID: 6621324 doi:10.1249/00005768-198315040-00013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, P.J., Kroon, P.A., Hollands, W.J., Walls, R., Jenkins, G., Kay, C.D., & Cassidy, A. (2009). Cardiovascular disease risk biomarkers and liver and kidney function are not altered in postmenopausal women after ingesting an elderberry extract rich in anthocyanins for 12 weeks. Journal of Nutrition, 139(12), 2266–2271. PubMed ID: 19793846 doi:10.3945/jn.109.113126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czank, C., Cassidy, A., Zhang, Q., Morrison, D.J., Preston, T., Kroon, P.A., . . . Kay, C.D. (2013). Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A 13C-tracer study. American Journal of Clinical Nutrition, 97(5), 995–1003. PubMed ID: 23604435 doi:10.3945/ajcn.112.049247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, J., Gupte, A., Gates, L., & Mumper, R.J. (2009). A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: Extraction methods, stability, anticancer properties and mechanisms. Food and Chemical Toxicology, 47(4), 837–847. PubMed ID: 19271318 doi:10.1016/j.fct.2009.01.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Ferrars, R.M., Czank, C., Zhang, Q., Botting, N.P., Kroon, P.A., Cassidy, A., & Kay, C.D. (2014). The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology, 171(13), 3268–3282. PubMed ID: 24602005 doi:10.1111/bph.12676

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, M., Czank, C., Woodward, G.M., Cassidy, A., & Kay, C.D. (2015). Phenolic metabolites of anthocyanins modulate mechanisms of endothelial function. Journal of Agricultural and Food Chemistry, 63(9), 2423–2431. doi:10.1021/jf5041993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, T.W., Waroonphan, S., Niwat, C., Gordon, M.H., & Lovegrove, J.A. (2012). The Glu298Asp single nucleotide polymorphism in the endothelial nitric oxide synthase gene differentially affects the vascular response to acute consumption of fruit and vegetable puree based drinks. Molecular Nutrition & Food Research, 56(7), 1014–1024. PubMed ID: 22689471 doi:10.1002/mnfr.201100689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godwin, C., Cook, M.D., & Willems, M.E.T. (2017). Effect of New Zealand blackcurrant extract on performance during the running based anaerobic sprint test in trained youth and recreationally active male football players. Sports, 5(3), 69. doi:10.3390/sports5030069

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonçalves, B., Landbo, A.K., Knudsen, D., Silva, A.P., Moutinho-Pereira, J., Rosa, E., & Meyer, A.S. (2004). Effect of ripeness and postharvest storage on the phenolic profiles of cherries (Prunus avium L.). Journal of Agricultural and Food Chemistry, 52(3), 523–530. doi:10.1021/jf030595s

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., Han, W., & Wang, M. (2008). Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: A review. African Journal of Biotechnology, 7(25), 6.

    • Search Google Scholar
    • Export Citation
  • Howatson, G., McHugh, M.P., Hill, J.A., Brouner, J., Jewell, A.P., van Someren, K.A., . . . Howatson, S.A. (2010). Influence of tart cherry juice on indices of recovery following marathon running. Scandinavian Journal of Medicine & Science in Sports, 20(6), 843–852. PubMed ID: 19883392 doi:10.1111/j.1600-0838.2009.01005.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howatson, G., & van Someren, K.A. (2007). Evidence of a contralateral repeated bout effect after maximal eccentric contractions. European Journal of Applied Physiology, 101(2), 207–214. PubMed ID: 17534644 doi:10.1007/s00421-007-0489-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Islam, H., Edgett, B.A., & Gurd, B.J. (2018). Coordination of mitochondrial biogenesis by PGC-1α in human skeletal muscle: A re-evaluation. Metabolism, 79, 42–51. PubMed ID: 29126696 doi:10.1016/j.metabol.2017.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivey, K.L., Jensen, M.K., Hodgson, J.M., Eliassen, A.H., Cassidy, A., & Rimm, E.B. (2017). Association of flavonoid-rich foods and flavonoids with risk of all-cause mortality. British Journal of Nutrition, 117(10), 1470–1477. PubMed ID: 28606222 doi:10.1017/S0007114517001325

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalt, W., Liu, Y., McDonald, J.E., Vinqvist-Tymchuk, M.R., & Fillmore, S.A. (2014). Anthocyanin metabolites are abundant and persistent in human urine. Journal of Agricultural and Food Chemistry, 62(18), 3926–3934. doi:10.1021/jf500107j

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keane, K.M., Bailey, S.J., Vanhatalo, A., Jones, A.M., & Howatson, G. (2018). Effects of Montmorency tart cherry (L. Prunus Cerasus) consumption on nitric oxide biomarkers and exercise performance. Scandinavia Journal of Medicine & Science in Sports, 28(7), 1746–1756. doi:10.1111/sms.13088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keane, K.M., Bell, P.G., Lodge, J.K., Constantinou, C.L., Jenkinson, S.E., Bass, R., & Howatson, G. (2016a). Phytochemical uptake following human consumption of Montmorency tart cherry (L. Prunus cerasus) and influence of phenolic acids on vascular smooth muscle cells in vitro. European Journal of Nutrition, 55(4), 1695–1705. doi:10.1007/s00394-015-0988-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keane, K.M., George, T.W., Constantinou, C.L., Brown, M.A., Clifford, T., & Howatson, G. (2016b). Effects of Montmorency tart cherry (Prunus Cerasus L.) consumption on vascular function in men with early hypertension. American Journal of Clinical Nutrition, 103(6), 1531–1539. doi:10.3945/ajcn.115.123869

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirakosyan, A., Seymour, E.M., Wolforth, J., McNish, R., Kaufman, P.B., & Bolling, S.F. (2015). Tissue bioavailability of anthocyanins from whole tart cherry in healthy rats. Food Chemistry, 171, 26–31. PubMed ID: 25308638 doi:10.1016/j.foodchem.2014.08.114

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuriyama, S., Shimazu, T., Ohmori, K., Kikuchi, N., Nakaya, N., Nishino, Y., . . . Tsuji, I. (2006). Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: The Ohsaki study. The Journal of the American Medical Association, 296(10), 1255–1265. PubMed ID: 16968850 doi:10.1001/jama.296.10.1255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letenneur, L., Proust-Lima, C., Le Gouge, A., Dartigues, J.F., & Barberger-Gateau, P. (2007). Flavonoid intake and cognitive decline over a 10-year period. American Journal of Epidemiology, 165(125), 1364–1371. doi:10.1093/aje/kwm036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levers, K., Dalton, R., Galvan, E., O’Connor, A., Goodenough, C., Simbo, S., . . . Kreider, R.B. (2016). Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. Journal of the International Society of Sports Nutrition, 13, 22. PubMed ID: 27231439 doi:10.1186/s12970-016-0133-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsukawa, T., Inaguma, T., Han, J., Villareal, M.O., & Isoda, H. (2015). Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. Journal of Nutritional Biochemistry, 26(8), 860–867. PubMed ID: 25940979 doi:10.1016/j.jnutbio.2015.03.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, H., Takenami, E., Iwasaki-Kurashige, K., Osada, T., Katsumura, T., & Hamaoka, T. (2005). Effects of blackcurrant anthocyanin intake on peripheral muscle circulation during typing work in humans. European Journal of Applied Physiology, 94(1–2), 36–45. PubMed ID: 15605279 doi:10.1007/s00421-004-1279-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McHugh, M.P., Connolly, D.A., Eston, R.G., & Gleim, G.W. (1999). Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Medicine, 27(3), 157–170. PubMed ID: 10222539 doi:10.2165/00007256-199927030-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLeay, Y., Barnes, M.J., Mundel, T., Hurst, S.M., Hurst, R.D., & Stannard, S.R. (2012). Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. Journal of the International Society of Sports Nutrition, 9, 19. PubMed ID: 22564864 doi:10.1186/1550-2783-9-19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moyer, R.A., Hummer, K.E., Finn, C.E., Frei, B., & Wrolstad, R.E. (2002). Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, rubus, and ribes. Journal of Agricultural and Food Chemistry, 50(3), 519–525. doi:10.1021/jf011062r

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muraki, I., Imamura, F., Manson, J.E., Hu, F.B., Willett, W.C., van Dam, R.M., & Sun, Q. (2013). Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. British Medical Journal, 347, f5001. doi:10.1136/bmj.f5001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, C.A., Cook, M.D., & Willems, M.E.T. (2017). Effect of New Zealand blackcurrant extract on repeated time-trial performance. Sports, 5(2), 25. doi:10.3390/sports5020025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, S., Komine, S., Warabi, E., Akiyama, K., Ishii, A., Ishige, K., . . . Shoda, J. (2017). Nuclear factor (erythroid derived 2)-like 2 activation increases exercise endurance capacity via redox modulation in skeletal muscles. Scientific Reports, 7(1), 12902. PubMed ID: 29018242 doi:10.1038/s41598-017-12926-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paschalis, V., Theodorou, A.A., Kyparos, A., Dipla, K., Zafeiridis, A., Panayiotou, G., . . . Nikolaidis, M.G. (2016). Low vitamin C values are linked with decreased physical performance and increased oxidative stress: Reversal by vitamin C supplementation. European Journal of Nutrition, 55(1), 45–53. PubMed ID: 25526969 doi:10.1007/s00394-014-0821-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paschalis, V., Theodorou, A.A., Margaritelis, N.V., Kyparos, A., & Nikolaidis, M.G. (2018). N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radical Biology & Medicine, 1, 288–297. doi:10.1016/j.freeradbiomed.2017.12.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, I.C., Vine, S.A., Blacker, S.D., & Willems, M.E.T. (2015). New Zealand blackcurrant extract improves high-intensity intermittent running. International Journal of Sports Nutrition and Exercise Metabolism, 25(5), 487–493. doi:10.1123/ijsnem.2015-0020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, B., & Anderson, R.A. (2012). An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet. British Journal of Nutrition, 108(4), 581–587. PubMed ID: 22142480 doi:10.1017/S000711451100599X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahman, M.M., Ichiyanagi, T., Komiyama, T., Hatano, Y., & Konishi, T. (2006). Superoxide radical- and peroxynitrite-scavenging activity of anthocyanins; structure-activity relationship and their synergism. Free Radical Research, 40(9), 993–1002. PubMed ID: 17015281 doi:10.1080/10715760600815322

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothwell, J.A., Pérez-Jiménez, J., Neveu, V., Medina-Ramon, A., M’Hiri, N., Garcia Lobato, P., . . . Scalbert, A. (2013). Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database, 2013, bat070. doi:10.1093/database/bat070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanmuganayagam, D., Beahm, M.R., Osman, H.E., Krueger, C.G., Reed, J.D., & Folts, J.D. (2002). Grape seed and grape skin extracts elicit a greater antiplatelet effect when used in combination than when used individually in dogs and humans. Journal of Nutrition, 132(12), 3592–3598. PubMed ID: 12468593 doi:10.1093/jn/132.12.3592

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Somerville, V., Bringans, C., & Braakhuis, A. (2017). Polyphenols and performance: A systematic review and meta-analysis. Sports Medicine, 47(8), 1589–1599. PubMed ID: 28097488 doi:10.1007/s40279-017-0675-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorrenti, V., Mazza, F., Campisi, A., Di Giacomo, C., Acquaviva, R., Vanella, L., & Galvano, F. (2007). Heme oxygenase induction by cyanidin-3-O-beta-glucoside in cultured human endothelial cells. Molecular Nutrition & Food Research, 51(5), 580–586. PubMed ID: 17440991 doi:10.1002/mnfr.200600204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speciale, A., Cimino, F., Saija, A., Canali, R., & Virgili, F. (2014). Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. Genes & Nutrition, 9(4), 404. PubMed ID: 24838260 doi:10.1007/s12263-014-0404-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starbuck, C., & Eston, R.G. (2012). Exercise-induced muscle damage and the repeated bout effect: Evidence for cross transfer. European Journal of Applied Physiology, 112(3), 1005–1013. PubMed ID: 21720885 doi:10.1007/s00421-011-2053-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauss, J.A., Willems, M.E.T., & Shepherd, S.O. (2018). New Zealand blackcurrant extract enhances fat oxidation during prolonged cycling in endurance-trained females. European Journal of Applied Physiology, 118(6), 1265–1272. PubMed ID: 29619595 doi:10.1007/s00421-018-3858-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, A.J., Cash, K.C., Johnson, W.D., Champagne, C.M., & Cefalu, W.T. (2010). Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. Journal of Nutrition, 140(10), 1764–1768. PubMed ID: 20724487 doi:10.3945/jn.110.125336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, X., Shen, T., Jiang, X., Xia, M., Sun, X., Guo, H., & Ling, W. (2015). Purified anthocyanins from bilberry and black currant attenuate hepatic mitochondrial dysfunction and steatohepatitis in mice with methionine and choline deficiency. Journal of Agricultural and Food Chemistry, 63(2), 552–561. doi:10.1021/jf504926n

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willems, M.E.T., Cousins, L., Williams, D., & Blacker, S.D. (2016). Beneficial effects of New Zealand blackcurrant extract on maximal sprint speed during the Loughborough Intermittent Shuttle Test. Sports, 4(3), 42. doi:10.3390/sports4030042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willems, M.E.T., Myers, S.D., Gault, M.L., & Cook, M.D. (2015). Beneficial physiological effects with blackcurrant intake in endurance athletes. International Journal of Sport Nutrition and Exercise Metabolism, 25(4), 367–374. PubMed ID: 25811286 doi:10.1123/ijsnem.2014-0233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, O.R., Netzel, G.A., & Sakzewski, A.R. (2013). A randomized, double-blind, placebo-controlled trial of the effect of dried purple carrot on body mass, lipids, blood pressure, body composition, and inflammatory markers in overweight and obese adults: The QUENCH trial. Canadian Journal of Physiology and Pharmacology, 91(6), 480–488. PubMed ID: 23746205 doi:10.1139/cjpp-2012-0349

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E., & Prior, R.L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069–4075. doi:10.1021/jf060300l

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J.W., Ikeda, K., & Yamori, Y. (2004a). Cyanidin-3-glucoside regulates phosphorylation of endothelial nitric oxide synthase. FEBS Letters, 574(1–3), 176–180. doi:10.1016/j.febslet.2004.08.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J.W., Ikeda, K., & Yamori, Y. (2004b). Upregulation of endothelial nitric oxide synthase by cyanidin-3-glucoside, a typical anthocyanin pigment. Hypertension, 44(2), 217–222. doi:10.1161/01.HYP.0000135868.38343.c6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, F., Chen, Y., Azat, R., & Zheng, Z. (2017). Mulberry anthocyanin extract ameliorates oxidative damage in HepG2 cells and prolongs the lifespan of Caenorhabditis elegans through MAPK and Nrf2 pathways. Oxidative Medicine and Cellular Longevity, 2017, 12.doi:10.1155/2017/7956158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yarahmadi, M., Askari, G., Kargarfard, M., Ghiasvand, R., Hoseini, M., Mohamadi, H., & Asadi, A. (2014). The effect of anthocyanin supplementation on body composition, exercise performance and muscle damage indices in athletes. International Journal of Preventive Medicine, 5(12), 1594–1600. PubMed ID: 25709796

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Xia, M., Yang, Y., Liu, F., Li, Z., Hao, Y., . . . Ling, W. (2011). Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clinical Chemistry, 57(11), 1524–1533. PubMed ID: 21926181 doi:10.1373/clinchem.2011.167361

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 408 408 60
Full Text Views 99 99 7
PDF Downloads 33 33 6