Hyperhydration-Induced Decrease in Urinary Luteinizing Hormone Concentrations of Male Athletes in Doping Control Analysis

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Low urinary luteinizing hormone (LH) values have been discussed as a marker to detect steroid abuse. However, suppressed LH concentrations related to highly diluted urine samples could be a misleading indication of anabolic steroid abuse. One aim of the present study was to examine the effect of hyperhydration on the interpretation of LH findings during doping control analysis and to investigate different possibilities to correct volume-related changes in urinary LH concentrations. Seven healthy, physically active, nonsmoking White males were examined for a 72-hr period, using water and a commercial sports drink as hyperhydration agents (20 ml/kg body weight). Urine samples were collected and analyzed according to the World Anti-Doping Agency’s technical documents. Baseline urinary LH concentrations, expressed as the mean ± SD for each individual, were within the acceptable physiological range (7.11 ± 5.42 IU/L). A comparison of the measured LH values for both hyperhydration phases (Phase A: 4.24 ± 5.60 IU/L and Phase B: 4.74 ± 4.72 IU/L) with the baseline (“normal”) values showed significant differences (Phase A: p < .001 and Phase B: p < .001), suggesting the clear effect of urine dilution due to hyperhydration. However, an adjustment of urinary LH concentrations by specific gravity based on a reference value of 1.020 seems to adequately correct the hyperhydration-induced decrease on the LH levels.

Athanasiadou, Voss, El Saftawy, Dbes, Al-Yazedi, Samsam, Mohamed-Ali, Alsayrafi, and Georgakopoulos are with the Anti-Doping Lab Qatar, Doha, Qatar. Athanasiadou and Valsami are with the Laboratory of Biopharmaceutics and Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece. Al-Jaber is with the Biomedical Research Center, Qatar University, Doha, Qatar.

Address author correspondence to Costas Georgakopoulos at costas@adlqatar.com.
International Journal of Sport Nutrition and Exercise Metabolism
Article Sections
References
  • ArakiS.SataF. & MurataK. (1990). Adjustment for urinary flow rate: An improved approach to biological monitoring. International Archives of Occupational and Environmental Health 62(6) 471477. PubMed ID: 2246067 doi:10.1007/BF00379066

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ArmstrongL.E. (2007). Assessing hydration status: The elusive gold standard. Journal of the American College of Nutrition 26(5) 575S584S. PubMed ID: 17921468 doi:10.1080/07315724.2007.10719661

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AthanasiadouI.KraiemS.Al-SowaidiS.Al-MohammedH.DbesN.Al-YazediS.GeorgakopoulosC. (2018). The effect of athletes’ hyperhydration on the urinary ‘steroid profile’ markers in doping control analysis. Drug Testing and Analysis 10(9) 14581468. PubMed ID: 29745045 doi:10.1002/dta.2403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BarrosoO.HandelsmanD.J.StrasburgerC. & ThevisM. (2012). Analytical challenges in the detection of peptide hormones for anti-doping purposes. Bioanalysis 4(13) 15771590. PubMed ID: 22831474 doi:10.4155/bio.12.128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BoenigerM.F.LowryL.K. & RosenbergJ. (1993). Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: A review. American Industrial Hygiene Association Journal 54(10) 615627. PubMed ID: 8237794 doi:10.1080/15298669391355134

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DonikeM. & RauthS. (1992). Excretion of ephedrine and endogenous steroids under conditions of controlled water intake and of water diuresis. In M. DonikeH. GeyerA. GotzmannU. Mareck-Engelke & S. Rauth (Eds.) Recent advances in doping analysis proceedings of the 10th cologne workshop on dope analysis (pp. 163176). Cologne, Germany: Verlag Sport and Buch Strauβ.

    • Search Google Scholar
    • Export Citation
  • GoebelC.HoweC.J.HoK.K.NelsonA.KazlauskasR. & TroutG.J. (2009). Screening for testosterone abuse in male athletes using the measurement of urinary LH, a revision of the paradigm. Drug Testing and Analysis 1(11–12) 511517. PubMed ID: 20355194

    • Search Google Scholar
    • Export Citation
  • HaaseC.BackerV.KalsenA.RzeppaS.HammersbachP. & HostrupM. (2016). The influence of exercise and dehydration on the urine concentrations of salbutamol after inhaled administration of 1600 μg salbutamol as a single dose in relation to doping analysis. Drug Testing and Analysis 8(7) 613620. PubMed ID: 26044066 doi:10.1002/dta.1828

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HandelsmanD.J. (2006). Clinical review: The rationale for banning human chorionic gonadotropin and estrogen blockers in sport. Journal of Clinical Endocrinol and Metabolism 91(5) 16461653. doi:10.1210/jc.2005-2569

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HandelsmanD.J.GoebelC.IdanA.JimenezM.TroutG. & KazlauskasR. (2009). Effects of recombinant human LH and hCG on serum and urine LH and androgens in men. Clinical Endocrinology 71(3) 417428. PubMed ID: 19170708 doi:10.1111/j.1365-2265.2008.03516.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HandelsmanD.J.IdanA.GraingerJ.GoebelC.TurnerL. & ConwayA.J. (2014). Detection and effects on serum and urine steroid and LH of repeated GnRH analog (leuprolide) stimulation. Journal of Steroid Biochemistry and Molecular Biology 141113120. PubMed ID: 24495617 doi:10.1016/j.jsbmb.2014.01.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeavnerD.L.MorganW.T.SearsS.B.RichardsonJ.D.ByrdG.D. & OgdenM.W. (2006). Effect of creatinine and specific gravity normalization techniques on xenobiotic biomarkers in smokers’ spot and 24-h urines. Journal of Pharmaceutical and Biomedical Analysis 40(4) 928942. PubMed ID: 16182503 doi:10.1016/j.jpba.2005.08.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LevineL. & FahyJ. (1945). The significance of the specific gravity. Journal of Industrial Hygiene Toxicology 27217223.

  • MiddletonD.R.S.WattsM.J.LarkR.M.MilneC.J. & PolyaD.A. (2016). Assessing urinary flow rate, creatinine, osmolality and other hydration adjustment methods for urinary biomonitoring using NHANES arsenic, iodine, lead and cadmium data. Environmental Health 15(1) 6880. PubMed ID: 27286873 doi:10.1186/s12940-016-0152-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OkabeT.TerashimaH. & SakamotoA. (2015). Determinants of liquid gastric emptying: Comparisons between milk and isocalorically adjusted clear fluids. British Journal of Anaesthesia 114(1) 7782. PubMed ID: 25260696 doi:10.1093/bja/aeu338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StenmanU.H.HotakainenK. & AlfthanH. (2008). Gonadotropins in doping: Pharmacological basis and detection of illicit use. British Journal of Pharmacology 154(3) 569583. PubMed ID: 18414398 doi:10.1038/bjp.2008.102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThompsonS.G.BarlowR.D.WaldN.J. & Van VunakisH. (1990). How should urinary cotinine concentrations be adjusted for urinary creatinine concentration? Clinica Chimica Acta 187(3) 289295. doi:10.1016/0009-8981(90)90114-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VijH.S. & HowellS. (1998). Improving the specific gravity adjustment method for assessing urinary concentrations of toxic substances. American Industrial Hygiene Association Journal 59(6) 375380. PubMed ID: 9670467 doi:10.1080/15428119891010622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Anti-Doping Agency. (2015). Guidelines for reporting & management of urinary human chorionic gonadotrophin (hCG) and luteinizing hormone (LH) findings in male athletes. (ver. 2.0). Retrieved from https://www.wada-ama.org/sites/default/files/resources/files/wada-guidelines-hcg-lh-findings-v2.0-2015-en.pdf

    • Export Citation
  • World Anti-Doping Agency. (2018). ISTI urine sample collection guidelines (ver. 6.0). Retrieved from https://www.wada-ama.org/sites/default/files/resources/files/wada_guidelines_urine_sample_collection_2014_v1.0_en.pdf

    • Export Citation
  • World Anti-Doping Agency. (2018). WADA Technical Document - TD2018CG/LH (ver. 1.0): Reporting & management of urinary human chorionic gonadotrophin (hCG) and luteinizing hormone (LH) findings in male athletes. Retrieved from https://www.wada-ama.org/sites/default/files/resources/files/td2018cglh_v1_en.pdf

    • Export Citation
  • World Anti-Doping Agency. (2018). World Anti-Doping Code: The 2018 prohibited list. Retrieved from https://www.wada-ama.org/sites/default/files/prohibited_list_2018_en.pdf

    • PubMed
    • Export Citation
  • World Anti-Doping Code. (2016). International Standard, ver. 9.0. Retrieved from https://www.wada-ama.org/sites/default/files/resources/files/isl_june_2016.pdf

    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 913 913 22
Full Text Views 21 21 5
PDF Downloads 13 13 3
Altmetric Badge
PubMed
Google Scholar