Ingesting a 12% Carbohydrate-Electrolyte Beverage Before Each Half of a Soccer Match Simulation Facilitates Retention of Passing Performance and Improves High-Intensity Running Capacity in Academy Players

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Paola Rodriguez-Giustiniani University of Stirling

Search for other papers by Paola Rodriguez-Giustiniani in
Current site
Google Scholar
PubMed
Close
*
,
Ian Rollo Gatorade Sports Science Institute

Search for other papers by Ian Rollo in
Current site
Google Scholar
PubMed
Close
*
,
Oliver C. Witard University of Stirling

Search for other papers by Oliver C. Witard in
Current site
Google Scholar
PubMed
Close
*
, and
Stuart D. R. Galloway University of Stirling

Search for other papers by Stuart D. R. Galloway in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study investigated the influence of ingesting a 12% carbohydrate plus electrolyte (CHO-E) solution providing 60 g of carbohydrate before each half of a 90-min soccer match simulation (SMS) protocol on skill performance, sprint speed, and high-intensity running capacity. Eighteen elite academy (age: 18 ± 2 years) soccer players ingested two 250-ml doses (pre-exercise and at halftime) of a 12% CHO-E solution or electrolyte placebo administered in a double-blind randomized cross-over design. During an indoor (artificial grass pitch) SMS, dribbling, passing, and sprint performance were assessed, and blood was drawn for glucose and lactate analysis. High-intensity running capacity was assessed following the SMS. Dribbling speed/accuracy and sprint speed remained unchanged throughout the SMS. Conversely, passing accuracy for both dominant (mean percentage difference [95% confidence interval, CI]: 9 [3, 15]) and nondominant (mean percentage difference [95% CI]: 13 [6, 20]) feet was better maintained during the SMS on CHO-E (p < .05), with passing speed better maintained in the nondominant foot (mean percentage difference [95% CI]: 5.3 [0.7, 9.9], p = .032). High-intensity running capacity was greater in CHO-E versus placebo (mean percentage difference [95% CI]: 13 [6, 20], p = .010). Capillary blood glucose concentration was higher in CHO-E than placebo at halftime (CHO-E: 5.8 ± 0.5 mM vs. placebo: 4.1 ± 0.4 mM, p = .001) and following the high-intensity running capacity test (CHO-E: 4.9 ± 0.4 mM vs. placebo: 4.3 ± 0.4 mM, p = .001). Ingesting a 12% CHO-E solution before each half of a match can aid in the maintenance of soccer-specific skill performance, particularly on the nondominant foot, and improves subsequent high-intensity running capacity.

Rodriguez-Giustiniani, Witard, and Galloway are with the Faculty of Health Sciences and Sport, Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, United Kingdom. Rollo is with Gatorade Sports Science Institute, PepsiCo Global Nutrition R&D, Leicester, United Kingdom.

Address author correspondence to Stuart D. R. Galloway at s.d.r.galloway@stir.ac.uk.
  • Collapse
  • Expand
  • Alghannam, A.F. (2011). Carbohydrate-protein ingestion improves subsequent running capacity towards the end of a football-specific intermittent exercise. Applied Physiology and Metabolism, 36(5), 748757. doi:10.1139/h11-097

    • Search Google Scholar
    • Export Citation
  • Ali, A., & Williams, C. (2009). Carbohydrate ingestion and soccer skill performance during prolonged intermittent exercise. Journal of Sports Sciences, 27(14), 14991508. PubMed ID: 19967596 doi:10.1080/02640410903334772

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, A., Williams, C., Nicholas, C.W., & Foskett, A. (2007). The influence of carbohydrate-electrolyte on soccer skill performance. Medicine & Science in Sports & Exercise, 39(11), 19691976. PubMed ID: 17986904 doi:10.1249/mss.0b013e31814fb3e3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsom, P.D., Seger, J.Y., Sjödin, B., & Ekblom, B. (1992). Physiological responses to maximal intensity intermittent exercise. European Journal of Applied Physiology and Occupational Physiology, 65(2), 144149. PubMed ID: 1396638 doi:10.1007/BF00705072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bangsbo, J., Iaia, F.M., & Krustrup, P. (2008). The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Medicine, 38(1), 3751. PubMed ID: 18081366 doi:10.2165/00007256-200838010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G.A. (1973). Perceived exertion – Note on history and methods. Medicine & Science in Sports & Exercise, 5(2), 9093. doi:10.1249/00005768-197300520-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bottoms, L.M., Hunter, A.M., & Galloway, S.D.R. (2007). Effects of carbohydrate ingestion on skill maintenance in squash players. European Journal of Sport Science, 6(3), 187195. doi:10.1080/17461390600804455

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, P.S., Sheldon, W., Wooster, B., Olsen, P., Boanas, P., & Krustrup, P. (2009). High-intensity running in English FA Premier League soccer matches. Journal of Sports Sciences, 27(2), 159168. PubMed ID: 19153866 doi:10.1080/02640410802512775

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cermak, M.N., & van Loon, L.J. (2013). The use of carbohydrates during exercise as an ergogenic aid. Sports Medicine, 43(11), 11391155. PubMed ID: 23846824 doi:10.1007/s40279-013-0079-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, N.D., Drust, B., Maclaren, D.P.M., & Reilly, T. (2008). Fluid provision and metabolic responses to soccer-specific exercise. European Journal of Applied Physiology, 104, 10691077. PubMed ID: 18781319 doi:10.1007/s00421-008-0864-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Currell, K., Conway, S., & Jeukendrup, A.E. (2009). Carbohydrate ingestion improves performance of a new reliable test of soccer performance. International Journal of Sport Nutrition and Exercise Metabolism, 19(1), 3446. PubMed ID: 19403952 doi:10.1123/ijsnem.19.1.34

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, J.M., Welsh, R.S., & Alerson, N.A. (2000). Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigue. International Journal of Sport Nutrition and Exercise Metabolism, 10(4), 476485. PubMed ID: 11099374 doi:10.1123/ijsnem.10.4.476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duelli, R., & Kuschinsky, W. (2001). Brain glucose transporters: Relationship to local energy demand. News in Physiological Sciences, 16, 7176. PubMed ID: 11390952

    • Search Google Scholar
    • Export Citation
  • Harper, L.D., Stevenson, E.J., Rollo, I., & Russell, M. (2017). The influence of a 12% carbohydrate-electrolyte beverage on self-paced soccer-specific exercise performance. Journal of Science and Medicine in Sport, 20(12), 11231129. PubMed ID: 28483560 doi:10.1016/j.jsams.2017.04.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, W.G., Marshall, S.W., Batterham, A.M., & Janin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E. (2010). Carbohydrate and exercise performance: The role of multiple transportable carbohydrates. Current Opinion in Clinical Nutrition and Metabolic Care, 13(4), 452457. PubMed ID: 20574242 doi:10.1097/MCO.0b013e328339de9f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsley, M., Penas-Ruiz, C., Terry, C., & Russell, M. (2014). Effects of carbohydrate-hydration strategies on glucose metabolism, sprint performance and hydration during a soccer match simulation in recreational players. Journal of Science and Medicine in Sport, 17(2), 239243. PubMed ID: 23702257 doi:10.1016/j.jsams.2013.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krustrup, P., Mohr, M., Steensberg, A., Bencke, J., Kiaer, M., & Bangsbo, J. (2006). Muscle and blood metabolites during a soccer game: Implications for sprint performance. Medicine and Science in Sport and Exercise, 38(6), 11651174. PubMed ID: 16775559 doi:10.1249/01.mss.0000222845.89262.cd

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Gao, J.H., Liu, H.L., & Fox, P.T. (2000). The temporal response of the brain after eating revealed by functional MRI. Nature, 405(6790), 10581062. PubMed ID: 10890447 doi:10.1038/35016590

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J. (1982). A simple, rapid method for the determination of glucose, lactate, pyruvate, alanine, 3-hydroxybutyrate and acetoacetate on a single 20-μL blood sample. Clinica Chimica Acta, 122(2), 231240. doi:10.1016/0009-8981(82)90282-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S.J., Nicholas, C.W., Lakomy, L.H., & Williams, C. (1999). The influence if intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. Journal of Sport Sciences, 17(11), 895903. doi:10.1080/026404199365452

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMorris, T., & Graydon, J. (1997). The effect of exercise on cognitive performance in soccer-specific tests. Journal Sports Sciences, 15(5), 459468. doi:10.1080/026404197367092

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McRae, K.A., & Galloway, S.D. (2012). Carbohydrate-electrolyte drink ingestion and skill performance during and after 2hr of indoor tennis match play. International Journal of Sport Nutrition and Exercise Metabolism, 22(1), 3846. PubMed ID: 22248499 doi:10.1123/ijsnem.22.1.38

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meeusen, R., & Decroix, L. (2018). Nutritional supplements and the brain. International Journal of Sport Nutrition and Exercise Metabolism, 28(2), 200211. PubMed ID: 29252056 doi:10.1123/ijsnem.2017-0314

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, M., Krustrup, P., & Bangsbo, J. (2005). Fatigue in soccer: A brief review. Journal of Sports Sciences, 23(6), 593599. PubMed ID: 16195008 doi:10.1080/02640410400021286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholas, C.W., Williams, C., Lakomy, H.K., Phillips, G., & Nowitz, A. (1995). Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. Journal of Sports Sciences, 13(4), 283290. PubMed ID: 7474041 doi:10.1080/02640419508732241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, W.J., & Rowlands, D.S. (2011). Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. American Journal of Physiology Gastrointestinal and Liver Physiology, 300(1), 181189. doi:10.1152/ajpgi.00419.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostojic, S.M., & Mazic, S. (2002). Effects of a carbohydrate-electrolyte drink on specific soccer tests and performance. Journal of Sports Science and Medicine, 1(2), 4753. PubMed ID: 24688270

    • Search Google Scholar
    • Export Citation
  • Phillips, S.M., Turner, A.P., Sanderson, M.F., & Sproule, J. (2012). Beverage carbohydrate concentration influences the intermittent endurance capacity of adolescent team games players during prolonged intermittent running. European Journal of Applied Physiology, 112(3), 11071116. PubMed ID: 21748368 doi:10.1007/s00421-011-2065-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reilly, T. (1997). Energetics of high-intensity exercise (soccer) with particular reference to fatigue. Journal of Sports Science, 15(3), 257263. doi:10.1080/026404197367263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, M., Benton, D., & Kingsley, M. (2012). Influence of carbohydrate supplementation on skill performance during a soccer match simulation. Journal of Science and Medicine in Sport, 15(4), 348354. doi:10.1016/j.jsams.2011.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, M., Rees, G., Benton, D., & Kingsley, M. (2011). An exercise protocol that replicates soccer match-play. International Journal of Sports Medicine, 32(7), 511518. doi:10.1055/s-0031-1273742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, D.T., Erdman, K.A., & Burke, L.M. (2016). American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Medicine & Science in Sports & Exercise, 48(3), 543568. doi:10.1249/MSS.0000000000000852

    • Search Google Scholar
    • Export Citation
  • Welsh, R.S., Davis, J.M., Burke, J.R., & Williams, H.G. (2002). Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Medicine & Science in Sports & Exercise, 34(4), 723731.

    • Search Google Scholar
    • Export Citation
  • Williams, C., & Rollo, I. (2015). Carbohydrate nutrition and team sport performance. Sports Medicine, 45(Suppl. 1), S13S22. doi:10.1007/s40279-015-0399-3

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5721 1334 48
Full Text Views 491 42 3
PDF Downloads 480 64 4