Reliability and Validity of Commercially Available Low-Cost Bioelectrical Impedance Analysis

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Research comparing portable body composition methods, such as bioelectrical impedance analysis (BIA), to air displacement plethysmography (ADP) is limited. We assessed reliability and validity of predicting fat-free mass (FFM) by the RJL, Omron, and Tanita BIA machines using ADP via BodPod as a criterion. FFM (kg) was assessed twice in college students (N = 77, 31 males and 46 females; age = 19.1 ± 1.2 years) using ADP, RJL, Omron, and Tanita BIAs. Reliability was assessed using analysis of variance to obtain an intraclass correlation statistic (Rxx). Validity was assessed using Pearson correlation (r) coefficient. FFM averaged 75.6 ± 9.4 kg in men and 59.8 ± 7.6 kg in women. Reliability was high in both genders RJL (Rxx = .974–.994), Omron (Rxx = .933–.993), and Tanita (Rxx = .921–.991). Validity within males was also high: RJL (r = .935), Omron (r = .942), and Tanita (r = .934), and only slightly lower in females: RJL (r = .924), Omron (r = .897), and Tanita (r = .898). The RJL, Omron, and Tanita BIA machines appear to be both reliable and valid for predicting FFM of male and female college students. Therefore, any of these three BIA devices is appropriate to use for body composition assessment in a healthy adult population.

Vasold, Parks, Phelan, Pontifex, and Pivarnik are with the Dept. of Kinesiology, Michigan State University, East Lansing, MI.

Address author correspondence to James M. Pivarnik at jimpiv@msu.edu.
  • Baumgartner, T.A., & Jackson, A.S. (1987). Measurement for evaluation in physical education and exercise science (3rd ed.). Dubuque, IA: Wm.C. Brown Publishers.

    • Search Google Scholar
    • Export Citation
  • Chumlea, W.C., & Guo, S.S. (1994). Bioelectrical impedance and body composition: Present status and future directions. Nutrition Reviews, 52(4), 123–131. PubMed ID: 8028817 doi:10.1111/j.1753-4887.1994.tb01404.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fields, D.A., Hunter, G.R., & Goran, M.I. (2000). Validation of the BOD POD with hydrostatic weighing: Influence of body clothing. International Journal of Obesity and Related Metabolic Disorders, 24(2), 200–205. PubMed ID: 10702771 doi:10.1038/sj.ijo.0801113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fornetti, W.C., Pivarnik, J.M., Foley, J.M., & Fiechtner, J.J. (1999). Reliability and validity of body composition measures in female athletes. Journal of Applied Physiology, 87(3), 1114–1122. PubMed ID: 10484585 doi:10.1152/jappl.1999.87.3.1114

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, A.L., Heyward, V.H., & Mermier, C.M. (2000). Predictive accuracy of Omron body logic analyzer in estimating relative body fat of adults. International Journal of Sport Nutrition, 10(2), 216–227.

    • Search Google Scholar
    • Export Citation
  • Kelly, J.S., & Metcalfe, J. (2012). Validity and reliability of body composition analysis using the Tanita BC418-MA. Journal of Exercise Physiology, 15(6), 74–83.

    • Search Google Scholar
    • Export Citation
  • Khaled, M.A., McCutcheon, M.J., Reddy, S., Pearman, P.L., Hunter, G.R., & Weinsier, R.L. (1988). Electrical impedance in assessing human body composition: The BIA method. The American Journal of Clinical Nutrition, 47(5), 789–792. PubMed ID: 3364394 doi:10.1093/ajcn/47.5.789

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laddu, D.R., Lee, V.R., Blew, R.M., Sato, T., Lohman, T.G., & Going, S.B. (2012). Predicting visceral adipose tissue by MRI using DXA and anthropometry in adolescents and young adults. International Journal of Body Composition Research, 10(4), 93–100. PubMed ID: 26097436

    • Search Google Scholar
    • Export Citation
  • Lohman, T.G. (1992). Advances in human body composition. Champaign, IL: Human Kinetics Publishers.

  • Lukaski, H.C., Johnson, P.E., Bolonchuk, W.W., & Lykken, G.I. (1985). Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American Journal of Clinical Nutrition, 41(4), 810–817. PubMed ID: 3984933 doi:10.1093/ajcn/41.4.810

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCrory, M.A., Gomez, T.D., Bernauer, E.M., & Molé, P.A. (1995). Evaluation of a new air displacement plethysmograph for measuring human body composition. Medicine & Science in Sports & Exercise, 27(12), 1686–1691. PubMed ID: 8614326 doi:10.1249/00005768-199512000-00016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pribyl, M., Smith, J., & Grimes, G. (2011). Accuracy of the Omron HBF-500 body composition monitor in male and female college students. International Journal of Exercise Science, 4(2), 93–101.

    • Search Google Scholar
    • Export Citation
  • Riebe, D., Ehrman, J.K., Liguori, G., & Magal, M. (Eds.). (2018). ACSM’s guidelines for exercise testing and prescription (10th ed.). Philadelphia, PA: Wolters Kluwer.

    • Search Google Scholar
    • Export Citation
  • Tucker, L.A., Lecheminant, J.D., & Bailey, B.W. (2014). Test-retest reliability of the Bod Pod: The effect of mu. Perceptual and Motor Skills, 118(2), 563–570. PubMed ID: 24897887 doi:10.2466/03.PMS.118k15w5

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 999 999 55
Full Text Views 51 51 8
PDF Downloads 28 28 4