Does a Novice Technician Produce Results Similar to That of an Experienced DXA Technician When Assessing Body Composition and Bone Mineral Density?

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Dual-energy X-ray absorptiometry is a commonly used clinical assessment tool for body composition and bone mineral density, which is gaining popularity in athletic cohorts. Results from body composition scans are useful for athletic populations to track training and nutritional interventions, while bone mineral density scans are valuable for athletes at risk of developing stress fractures due to low bone mineral density. However, no research has ascertained if a novice technician (accredited but not experienced) could produce similar results to an experienced technician. Two groups of recreational athletes were scanned, one by an experienced technician, one by a novice technician. All participants were scanned twice with repositioning between scans. The experienced technician’s reliability (intraclass correlation coefficient = .989–.998; percentage change in mean = −0.01 to 0.10), precision (typical error as coefficient of variation percentage = 0.01–0.47; SEM% = 0.61–1.39), and sensitivity to change (smallest real difference percentage = 1.70–3.85) were similar; however, superior to those of the novice technician. The novice technician results were reliability (intraclass correlation coefficient = .985–.997; percentage change in mean = −0.03 to 0.23), precision (typical error as coefficient of variation percentage = 0.03–0.75; SEM% = 1.06–2.12), and sensitivity to change (smallest real difference percentage = 2.73–5.86). Extensive experience, while valuable, is not a necessary requirement to produce quality results when undertaking whole-body dual-energy X-ray absorptiometry scanning.

Persson, Shiel, and Furness are with the Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia. Climstein and Furness are with the Water Based Research Unit, Bond Institute of Health & Sport, Bond University, Gold Coast, Queensland, Australia. Climstein is also with the School of Health and Human Sciences, Southern Cross University, Lismore, New South Wales, Australia; and Exercise, Health & Performance Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia.

Furness (jfurness@bond.edu.au) is corresponding author.
International Journal of Sport Nutrition and Exercise Metabolism
Article Sections
References
  • AndreoliA.MonteleoneM.Van LoanM.PromenzioL.TarantinoU. & De LorenzoA. (2001). Effects of different sports on bone density and muscle mass in highly trained athletes. Medicine & Science in Sports & Exercise 33(4) 507511. PubMed ID: 11283423 doi:10.1097/00005768-200104000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaniakN.GrzybowskiS. & OlszynskiW.P. (2014). Dual-energy X-ray absorptiometry scan autoanalysis vs. manual analysis. Journal of Clinical Densitometry 17(1) 97103. PubMed ID: 24176429 doi:10.1016/j.jocd.2013.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BennellK.L.MalcolmS.A.ThomasS.A.ReidS.J.BruknerP.D.EbelingP.R. & WarkJ.D. (1996). Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. The American Journal of Sports Medicine 24(6) 810818. PubMed ID: 8947404 doi:10.1177/036354659602400617

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BilsboroughJ.C.GreenwayK.OparD.LivingstoneS.CordyJ. & CouttsA.J. (2014). The accuracy and precision of DXA for assessing body composition in team sport athletes. Journal of Sports Sciences 32(19) 18211828. PubMed ID: 24914773 doi:10.1080/02640414.2014.926380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BlakeG.M. & FogelmanI. (2007). The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgraduate Medical Journal 83(982) 509517. PubMed ID: 17675543 doi:10.1136/pgmj.2007.057505

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BuckinxF.LandiF.CesariM.FieldingR.A.VisserM.EngelkeK.KanisJ.A. (2018). Pitfalls in the measurement of muscle mass: A need for a reference standard. Journal of Cachexia Sarcopenia and Muscle 9(2) 269278. PubMed ID: 29349935 doi:10.1002/jcsm.12268

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChenY.-T.TenfordeA.S. & FredericsonM. (2013). Update on stress fractures in female athletes: Epidemiology, treatment, and prevention. Current Reviews in Musculoskeletal Medicine 6(2) 173181. PubMed ID: 23536179 doi:10.1007/s12178-013-9167-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DuthieG.M. (2006). A framework for the physical development of elite rugby union players. International Journal of Sports Physiology and Performance 1(1) 213. PubMed ID: 19114733 doi:10.1123/ijspp.1.1.2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FerryB.DuclosM.BurtL.TherreP.Le GallF.JaffréC. & CourteixD. (2011). Bone geometry and strength adaptations to physical constraints inherent in different sports: Comparison between elite female soccer players and swimmers. Journal of Bone and Mineral Metabolism 29(3) 342351. PubMed ID: 20963459 doi:10.1007/s00774-010-0226-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FredericsonM.NgoJ. & CobbK. (2005). Effects of ball sports on future risk of stress fracture in runners. Clinical Journal of Sport Medicine 15(3) 136141. PubMed ID: 15867555 doi:10.1097/01.jsm.0000165489.68997.60

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FullerJ.T.ArcherJ.BuckleyJ.D.TsirosM.D. & ThewlisD. (2016). The reliability of dual-energy X-ray absorptiometry measurements of bone mineral density in the metatarsals. Skeletal Radiology 45(1) 135140. PubMed ID: 26250556 doi:10.1007/s00256-015-2227-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GeorgesonE.C.WeeksB.K.McLellanC.P. & BeckB.R. (2011). Body composition change over a professional rugby league season and relationship to rates and types of injury. Medicine & Science in Sports & Exercise 43(5 Suppl. 1)108. doi:10.1249/01.MSS.0000402994.36487.79

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HagmarM.BerglundB.BrismarK. & HirschbergA.L. (2013). Body composition and endocrine profile of male Olympic athletes striving for leanness. Clinical Journal of Sport Medicine 23(3) 197201. PubMed ID: 23275346 doi:10.1097/JSM.0b013e31827a8809

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HangartnerT.N.WarnerS.BraillonP.JankowskiL. & ShepherdJ. (2013). The official positions of the international society for clinical densitometry: Acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. Journal of Clinical Densitometry 16(4) 520536. PubMed ID: 24183641 doi:10.1016/j.jocd.2013.08.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HopkinsW.G. (2000). Measures of reliability in sports medicine and science. Sports Medicine 30(1) 115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HopkinsW.G.MarshallS.W.BatterhamA.M. & HaninJ. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise 41(1) 313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Society Clinical Densitometry (ISCD). (2015). ISCD 2015 adult official positions. Middletown, CT: Author.

  • IonanA.C.PolleyM.-Y.C.McShaneL.M. & DobbinK.K. (2014). Comparison of confidence interval methods for an intra-class correlation coefficient (ICC). BMC Medical Research Methodology 14121. PubMed ID: 25417040 doi:10.1186/1471-2288-14-121

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JohnellO. & KanisJ.A. (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International 17(12) 17261733. PubMed ID: 16983459 doi:10.1007/s00198-006-0172-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KelseyJ.L.BachrachL.K.Procter-GrayE.NievesJ.GreendaleG.A.SowersM.CobbK.L. (2007). Risk factors for stress fracture among young female cross-country runners. Medicine & Science in Sports & Exercise 39(9) 14571463. PubMed ID: 17805074 doi:10.1249/mss.0b013e318074e54b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KerrA.SlaterG.J.ByrneN. & NanaA. (2016). Reliability of 2 different positioning protocols for dual-energy X-ray absorptiometry measurement of body composition in healthy adults. Journal of Clinical Densitometry 19(3) 282289. PubMed ID: 26343822 doi:10.1016/j.jocd.2015.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KiebzakG.M.LeamyL.J.PiersonL.M.NordR.H. & ZhangZ.Y. (2000). Measurement precision of body composition variables using the lunar DPX-L densitometer. Journal of Clinical Densitometry 3(1) 3541. PubMed ID: 10745300 doi:10.1385/JCD:3:1:035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KimH.S. & YangS.O. (2014). Quality control of DXA system and precision test of radio-technologists. Journal of Bone Metabolism 2127. PubMed ID: 24707462 doi:10.11005/jbm.2014.21.1.2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LewieckiE.M. (2005). Clinical applications of bone density testing for osteoporosis. Minerva Medica 96(5) 317330. PubMed ID: 16227947

    • Search Google Scholar
    • Export Citation
  • LexellJ.E. & DownhamD.Y. (2005). How to assess the reliability of measurements in rehabilitation. American Journal of Physical Medicine & Rehabilitation 84(9) 719723. PubMed ID: 16141752 doi:10.1097/01.phm.0000176452.17771.20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LohmanM.TallrothK.KettunenJ.A. & MarttinenM.T. (2009). Reproducibility of dual-energy x-ray absorptiometry total and regional body composition measurements using different scanning positions and definitions of regions. Metabolism: Clinical and Experimental 58(11) 16631668. PubMed ID: 19632696 doi:10.1016/j.metabol.2009.05.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MunroB. & VisintainerM. (2005). Statistical methods for health care research (5th ed. Vol. 1). Philadelphia, PA: Lippincott.

  • NanaA.SlaterG.J.HopkinsW.G. & BurkeL.M. (2012). Effects of daily activities on dual-energy X-ray absorptiometry measurements of body composition in active people. Medicine & Science in Sports & Exercise 44(1) 180189. PubMed ID: 22179140 doi:10.1249/MSS.0b013e318228b60e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NanaA.SlaterG.J.HopkinsW.G. & BurkeL.M. (2013). Effects of exercise sessions on DXA measurements of body composition in active people. Medicine & Science in Sports & Exercise 45(1) 178185. PubMed ID: 22895377 doi:10.1249/MSS.0b013e31826c9cfd

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NewtonR.TaaffeD.SpryN.GardinerR.LevinG.WallB.GalvaoD. (2009). A phase III clinical trial of exercise modalities on treatment side-effects in men receiving therapy for prostate cancer. BMC Cancer 9210. PubMed ID: 19563641 doi:10.1186/1471-2407-9-210

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchnackenburgK.E.MacdonaldH.M.FerberR.WileyJ.P. & BoydS.K. (2011). Bone quality and muscle strength in female athletes with lower limb stress fractures. Medicine & Science in Sports & Exercise 43(11) 21102119. PubMed ID: 21552163 doi:10.1249/MSS.0b013e31821f8634

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ScofieldK.L. & HechtS. (2012). Bone health in endurance athletes: Runners, cyclists, and swimmers. Current Sports Medicine Reports 11(6) 328334. PubMed ID: 23147022 doi:10.1249/JSR.0b013e3182779193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StandorthD.LuT.Stults-KolemainenM.CrimB.N. & StanforthP.R. (2016). Bone mineral content and density among female NCAA division I athletes across the competitive season and over a multi-year time frame. Journal of Strength and Conditioning Research 30(10) 28282838. PubMed ID: 25486296 doi:10.1519/JSC.0000000000000785

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StewartA.D. (2001). Assessing body composition in athletes. Nutrition 17(7–8) 694695. doi:10.1016/S0899-9007(01)00545-7

  • TenfordeA.S.SainaniK.L.Carter SayresL.MilgromC. & FredericsonM. (2015). Participation in ball sports may represent a prehabilitation strategy to prevent future stress fractures and promote bone health in young athletes. Physical Medicine and Rehabilitation 7(2) 222225. PubMed ID: 25499072 doi:10.1016/j.pmrj.2014.09.017

    • Search Google Scholar
    • Export Citation
  • TrevethanR. (2017). Intraclass correlation coefficients: Clearing the air, extending some cautions, and making some requests. Health Services and Outcomes Research Methodology 17(2) 127143. doi:10.1007/s10742-016-0156-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TrexlerE.Smith-RyanA.MannJ.IveyP.HirschK. & MockM. (2017). Longitudinal body composition changes in NCAA division I college football players. Journal of Strength and Conditioning Research 31(1) 18. PubMed ID: 28005635 doi:10.1519/JSC.0000000000001486

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WattsJ.J.Abimanyi-OchomJ.SanderK.M. (2013). Osteoporosis costing all Australians. A new burden of disease analysis—2012 to 2022Glebe, Australia: Osteoporosis Australia.

    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 898 898 28
Full Text Views 16 16 5
PDF Downloads 14 14 5
Altmetric Badge
PubMed
Google Scholar