Resistance Training, Antioxidant Status, and Antioxidant Supplementation

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Resistance training is known to promote the generation of reactive oxygen species. Although this can likely upregulate the natural, endogenous antioxidant defense systems, high amounts of reactive oxygen species can cause skeletal muscle damage, fatigue, and impair recovery. To prevent these, antioxidant supplements are commonly consumed along with exercise. Recently, it has been shown that these reactive oxygen species are important for the cellular adaptation process, acting as redox signaling molecules. However, most of the research regarding antioxidant status and antioxidant supplementation with exercise has focused on endurance training. In this review, the authors discuss the evidence for resistance training modulating the antioxidant status. They also highlight the effects of combining antioxidant supplementation with resistance training on training-induced skeletal muscle adaptations.

Ismaeel, Papoutsi, Panton, and Koutakis are with the Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL. Holmes is with the Department of Health, Human Performance and Recreation, Baylor University, Waco, TX. Panton is also with The Institute for Successful Longevity, Florida State University, Tallahassee, FL.

Koutakis (pkoutakis@fsu.edu) is corresponding author.
International Journal of Sport Nutrition and Exercise Metabolism
Article Sections
References
  • AtashakS.PeeriM.AzarbayjaniM.A. & StannardS.R. (2014). Effects of ginger (Zingiber officinale Roscoe) supplementation and resistance training on some blood oxidative stress markers in obese men. Journal of Exercise Science & Fitness 12(1) 2630. doi:10.1016/j.jesf.2014.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AveryN.G.KaiserJ.L.SharmanM.J.ScheettT.P.BarnesD.M.GómezA.L.VolekJ.S. (2003). Effects of vitamin E supplementation on recovery from repeated bouts of resistance exercise. The Journal of Strength and Conditioning Research 17(4) 801809. PubMed ID: 14636105

    • Search Google Scholar
    • Export Citation
  • AzizbeigiK.AzarbayjaniM.A.PeeriM.Agha-alinejadH. & StannardS. (2013). The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. International Journal of Sport Nutrition and Exercise Metabolism 23(3) 230238. PubMed ID: 23239675 doi:10.1123/ijsnem.23.3.230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AzizbeigiK.StannardS.AtashakS. & Mosalman HaghighiM. (2014). Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males. Journal of Exercise Science & Fitness 12(1) 16. doi:10.1016/j.jesf.2013.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BalabanR.S.NemotoS. & FinkelT. (2005). Mitochondria, oxidants, and aging. Cell 120(4) 483495. PubMed ID: 15734681 doi:10.1016/j.cell.2005.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BarbieriE. & SestiliP. (2012). Reactive oxygen species in skeletal muscle signaling. Journal of Signal Transduction 2012982794. PubMed ID: 22175016 doi:10.1155/2012/982794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassel-DubyR. & OlsonE.N. (2006). Signaling pathways in skeletal muscle remodeling. Annual Review of Biochemistry 751937. PubMed ID: 16756483 doi:10.1146/annurev.biochem.75.103004.142622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeyerK.S.StoutJ.R.FukudaD.H.JajtnerA.R.TownsendJ.R.ChurchD.D.HoffmanJ.R. (2017). Impact of polyphenol supplementation on acute and chronic response to resistance training. The Journal of Strength and Conditioning Research 31(11) 29452954. PubMed ID: 29068862 doi:10.1519/JSC.0000000000002104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BirbenE.SahinerU.M.SackesenC.ErzurumS. & KalayciO. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal 5(1) 919. PubMed ID: 23268465 doi:10.1097/WOX.0b013e3182439613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BjørnsenT.SalvesenS.BerntsenS.HetlelidK.J.SteaT.H.Lohne-SeilerH.PaulsenG. (2016). Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scandinavian Journal of Medicine & Science in Sports 26(7) 755763. doi:10.1111/sms.12506

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BobeufF.LabonteM.DionneI.J. & KhalilA. (2011). Combined effect of antioxidant supplementation and resistance training on oxidative stress markers, muscle and body composition in an elderly population. The Journal of Nutrition Health & Aging 15(10) 883889. PubMed ID: 22159777

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BobeufF.LabontéM.KhalilA. & DionneI.J. (2010). Effects of resistance training combined with antioxidant supplementation on fat-free mass and insulin sensitivity in healthy elderly subjects. Diabetes Research and Clinical Practice 87(1) e1e3. PubMed ID: 19880208 doi:10.1016/j.diabres.2009.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BowtellJ.L.SumnersD.P.DyerA.FoxP. & MilevaK.N. (2011). Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Medicine & Science in Sports & Exercise 43(8) 15441551. PubMed ID: 21233776 doi:10.1249/MSS.0b013e31820e5adc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BraakhuisA.J. & HopkinsW.G. (2015). Impact of dietary antioxidants on sport performance: A review. Sports Medicine 45(7) 939955. doi:10.1007/s40279-015-0323-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BraunwaldE. & KlonerR.A. (1985). Myocardial reperfusion: A double-edged sword? The Journal of Clinical Investigation 76(5) 17131719. PubMed ID: 4056048

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cakir-AtabekH.DemirS.PinarbaŞiliR.D. & GündüzN. (2010). Effects of different resistance training intensity on indices of oxidative stress. The Journal of Strength and Conditioning Research 24(9) 24912497. PubMed ID: 20802287 doi:10.1519/JSC.0b013e3181ddb111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CarochoM. & FerreiraI.C.F.R. (2013). A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology 511525. PubMed ID: 23017782 doi:10.1016/j.fct.2012.09.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CobleyJ.N.CloseG.L.BaileyD.M. & DavisonG.W. (2017). Exercise redox biochemistry: Conceptual, methodological and technical recommendations. Redox Biology 12540548. PubMed ID: 28371751 doi:10.1016/j.redox.2017.03.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CobleyJ.N.McGloryC.MortonJ.P. & CloseG.L. (2011). N-Acetylcysteine’s attenuation of fatigue after repeated bouts of intermittent exercise: Practical implications for tournament situations. International Journal of Sport Nutrition and Exercise Metabolism 21(6) 451461. PubMed ID: 22089305

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CobleyJ.N.McHardyH.MortonJ.P.NikolaidisM.G. & CloseG.L. (2015). Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations. Free Radical Biology & Medicine 846576. PubMed ID: 25841784 doi:10.1016/j.freeradbiomed.2015.03.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Souza PadilhaC.RibeiroA.S.da SilvaD.R.P.do NascimentoM.A.OkinoA.M.VenturiniD.CyrinoE.S. (2015). Effect of resistance training and detraining on the oxidative stress in obese older women. Revista Brasileira de Cineantropometria e Desempenho Humano 17(5) 517526. doi:10.5007/1980-00372015v17n5p517

    • Search Google Scholar
    • Export Citation
  • DoneA.J. & TraustadóttirT. (2016). Nrf2 mediates redox adaptations to exercise. Redox Biology 10191199. PubMed ID: 27770706 doi:10.1016/j.redox.2016.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FieldingR.A. & MeydaniM. (1997). Exercise, free radical generation, and aging. Aging 9(1–2) 1218.

  • FigueiredoV.C. & MarkworthJ.F. (2015). Mechanisms of protein synthesis activation following exercise: New pieces to the increasingly complex puzzle. The Journal of Physiology 593(21) 46934695. PubMed ID: 26515305 doi:10.1113/JP271431

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FormanH.J.DaviesK.J.A. & UrsiniF. (2014). How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radical Biology & Medicine 662435. PubMed ID: 23747930 doi:10.1016/j.freeradbiomed.2013.05.045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FurlongJ.RyndersC.A.SutherlinM.PatrieJ.KatchF.I.HertelJ. & WeltmanA. (2014). Effect of an herbal/botanical supplement on strength, balance, and muscle function following 12-weeks of resistance training: A placebo controlled study. Journal of the International Society of Sports Nutrition 1123. PubMed ID: 24910543 doi:10.1186/1550-2783-11-23

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-LópezD.HäkkinenK.CuevasM.J.LimaE.KauhanenA.MattilaM.González-GallegoJ. (2007). Effects of strength and endurance training on antioxidant enzyme gene expression and activity in middle-aged men. Scandinavian Journal of Medicine & Science in Sports 17(5) 595604. doi:10.1111/j.1600-0838.2006.00620.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomez-CabreraM.-C.DomenechE. & ViñaJ. (2008). Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radical Biology & Medicine 44(2) 126131. PubMed ID: 18191748 doi:10.1016/j.freeradbiomed.2007.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HaghighatA.MaderS.PauseA. & SonenbergN. (1995). Repression of cap-dependent translation by 4E-binding protein 1: Competition with p220 for binding to eukaryotic initiation factor-4E. The EMBO Journal 14(22) 57015709. PubMed ID: 8521827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarmanD. (1956). Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology 11(3) 298300. PubMed ID: 13332224

  • HarperM.-E.BevilacquaL.HagopianK.WeindruchR. & RamseyJ.J. (2004). Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiologica Scandinavica 182(4) 321331. PubMed ID: 15569093 doi:10.1111/j.1365-201X.2004.01370.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HerrlingerK.A.ChirouzesD.M. & CeddiaM.A. (2015). Supplementation with a polyphenolic blend improves post-exercise strength recovery and muscle soreness. Food & Nutrition Research 5930034. PubMed ID: 26689317 doi:10.3402/fnr.v59.30034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Institute of Medicine. (2000). Dietary reference intakes for vitamin C vitamin E selenium and carotenoids. Washington, DC: National Academies Press.

    • Search Google Scholar
    • Export Citation
  • ItoN.RueggU.T.KudoA.Miyagoe-SuzukiY. & TakedaS. (2013). Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nature Medicine 19(1) 101106. PubMed ID: 23202294 doi:10.1038/nm.3019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JówkoE.SacharukJ.BalasińskaB.OstaszewskiP.CharmasM. & CharmasR. (2011). Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutrition Research 31(11) 813821. doi:10.1016/j.nutres.2011.09.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KhansariN.ShakibaY. & MahmoudiM. (2009). Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Patents on Inflammation & Allergy Drug Discovery 3(1) 7380. PubMed ID: 19149749

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KramerH.F. & GoodyearL.J. (2007). Exercise, MAPK, and NF-κB signaling in skeletal muscle. Journal of Applied Physiology 103(1) 388395. doi:10.1152/japplphysiol.00085.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LabontéM.DionneI.J.BouchardD.R.SénéchalM.TessierD.KhalilA.DionneI.J. (2008). Effects of antioxidant supplements combined with resistance exercise on gains in fat-free mass in healthy elderly subjects: A pilot study. Journal of the American Geriatrics Society 56(9) 17661768. doi:10.1111/j.1532-5415.2008.01810.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaplanteM. & SabatiniD.M. (2012). mTOR signaling in growth control and disease. Cell 149(2) 274293. PubMed ID: 22500797 doi:10.1016/j.cell.2012.03.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leonardo-MendonçaR.C.Ocaña-WilhelmiJ.de HaroT.de Teresa-GalvánC.Guerra-HernándezE.RusanovaI.Acuña-CastroviejoD. (2017). The benefit of a supplement with the antioxidant melatonin on redox status and muscle damage in resistance-trained athletes. Applied Physiology Nutrition and Metabolism 42(7) 700707. doi:10.1139/apnm-2016-0677

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeslieN.R.BennettD.LindsayY.E.StewartH.GrayA. & DownesC.P. (2003). Redox regulation of PI 3-kinase signalling via inactivation of PTEN. The EMBO Journal 22(20) 55015510. PubMed ID: 14532122 doi:10.1093/emboj/cdg513

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeversK.DaltonR.GalvanE.GoodenoughC.O’ConnorA.SimboS.KreiderR.B. (2015). Effects of powdered Montmorency tart cherry supplementation on an acute bout of intense lower body strength exercise in resistance trained males. Journal of the International Society of Sports Nutrition 1241. PubMed ID: 26578852 doi:10.1186/s12970-015-0102-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LiY.-P.ChenY.JohnJ.MoylanJ.JinB.MannD.L. & ReidM.B. (2005). TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. The FASEB Journal 19(3) 362370. doi:10.1096/fj.04-2364com

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MakanaeY.KawadaS.SasakiK.NakazatoK. & IshiiN. (2013). Vitamin C administration attenuates overload-induced skeletal muscle hypertrophy in rats. Acta Physiologica 208(1) 5765. doi:10.1111/apha.12042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MasonS.A.MorrisonD.McConellG.K. & WadleyG.D. (2016). Muscle redox signalling pathways in exercise. Role of antioxidants. Free Radical Biology & Medicine 982945. PubMed ID: 26912034 doi:10.1016/j.freeradbiomed.2016.02.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MatsuzawaA. & IchijoH. (2005). Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants & Redox Signaling 7(3–4) 472481. doi:10.1089/ars.2005.7.472

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCuneL.M.KubotaC.Stendell-HollisN.R. & ThomsonC.A. (2011). Cherries and health: A review. Critical Reviews in Food Science and Nutrition 51(1) 112. PubMed ID: 21229414 doi:10.1080/10408390903001719

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MerryT.L. & RistowM. (2016). Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? The Journal of Physiology 594(18) 51355147. PubMed ID: 26638792 doi:10.1113/JP270654

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MoylanJ.S. & ReidM.B. (2007). Oxidative stress, chronic disease, and muscle wasting. Muscle & Nerve 35(4) 411429. PubMed ID: 17266144 doi:10.1002/mus20743

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NikiE. (2018). Oxidative stress and antioxidants: Distress or eustress? Free Radical Biology & Medicine 124564. doi:10.1016/j.freeradbiomed.2018.05.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’FallonK.S.KaushikD.Michniak-KohnB.DunneC.P.ZambraskiE.J. & ClarksonP.M. (2012). Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. International Journal of Sport Nutrition and Exercise Metabolism 22(6) 430437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OwenJ.B. & ButterfieldD.A. (2010). Measurement of oxidized/reduced glutathione ratio. In P. Bross& N. Gregersen (Eds.) Protein misfolding and cellular stress in disease and aging (pp. 269277). Totowa, NJ: Humana Press. doi:10.1007/978-1-60761-756-3_18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OwensD.J.TwistC.CobleyJ.N.HowatsonG. & CloseG.L. (2019). Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? European Journal of Sport Science 19(1) 7185. PubMed ID: 30110239 doi:10.1080/17461391.2018.1505957

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PariseG.PhillipsS.M.KaczorJ.J. & TarnopolskyM.A. (2005). Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology & Medicine 39(2) 289295. PubMed ID: 15964520 doi:10.1016/j.freeradbiomed.2005.03.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ParkS.-Y. & KwakY.-S. (2016). Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. Journal of Exercise Rehabilitation 12(2) 113117. PubMed ID: 27162773 doi:10.12965/jer.1632598.299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PaulsenG.HamarslandH.CummingK.T.JohansenR.E.HulmiJ.J.BørsheimE.RaastadT. (2014). Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. The Journal of Physiology 592(24) 53915408. PubMed ID: 25384788 doi:10.1113/jphysiol.2014.279950

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PompellaA.SiesH.WackerR.BrounsF.GruneT.BiesalskiH.K. & FrankJ. (2014). The use of total antioxidant capacity as surrogate marker for food quality and its effect on health is to be discouraged. Nutrition 30(7) 791793. doi:10.1016/j.nut.2013.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PowersS.K.DuarteJ.KavazisA.N. & TalbertE.E. (2010). Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Experimental Physiology 95(1) 19. PubMed ID: 19880534 doi:10.1113/expphysiol.2009.050526

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PowersS.K. & JacksonM.J. (2008). Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiological Reviews 88(4) 12431276. PubMed ID: 18923182 doi:10.1152/physrev.00031.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PowersS.K.SmuderA.J. & JudgeA.R. (2012). Oxidative stress and disuse muscle atrophy: Cause or consequence? Current Opinion in Clinical Nutrition and Metabolic Care 15(3) 240245. PubMed ID: 22466926 doi:10.1097/MCO.0b013e328352b4c2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RaughtB.PeirettiF.GingrasA.-C.LivingstoneM.ShahbazianD.MayeurG.L.HersheyJ.W. (2004). Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. The EMBO Journal 23(8) 17611769. PubMed ID: 15071500 doi:10.1038/sj.emboj.7600193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReidM.B. (2001). Invited review: Redox modulation of skeletal muscle contraction: What we know and what we don’t. Journal of Applied Physiology 90(2) 724731. PubMed ID: 11160074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReidM.B. (2008). Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radical Biology & Medicine 44(2) 169179. PubMed ID: 18191753 doi:10.1016/j.freeradbiomed.2007.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RistowM.ZarseK.OberbachA.KlötingN.BirringerM.KiehntopfM.BlüherM. (2009). Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences of the United States of America 106(21) 86658670. doi:10.1073/pnas.0903485106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RokitzkiL.LogemannE.HuberG.KeckE. & KeulJ. (1994). α-Tocopherol supplementation in racing cyclists during extreme endurance training. International Journal of Sport Nutrition 4(3) 253264. PubMed ID: 7987360

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RousseauA.-S.MargaritisI.ArnaudJ.FaureH. & RousselA.-M. (2006). Physical activity alters antioxidant status in exercising elderly subjects. The Journal of Nutritional Biochemistry 17(7) 463470. PubMed ID: 16443361 doi:10.1016/j.jnutbio.2005.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SacheckJ.M.MilburyP.E.CannonJ.G.RoubenoffR. & BlumbergJ.B. (2003). Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radical Biology & Medicine 34(12) 15751588. PubMed ID: 12788477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchafferS. & HalliwellB. (2012). Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes & Nutrition 7(2) 99109. PubMed ID: 22012276 doi:10.1007/s12263-011-0255-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SenguptaS.PetersonT.R. & SabatiniD.M. (2010). Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Molecular Cell 40(2) 310322. PubMed ID: 20965424 doi:10.1016/j.molcel.2010.09.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SiesH. (2015). Oxidative stress: A concept in redox biology and medicine. Redox Biology 4180183. PubMed ID: 25588755 doi:10.1016/j.redox.2015.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SindhiV.GuptaV.SharmaK.BhatnagarS.KumariR. & DhakaN. (2013). Potential applications of antioxidants—A review. Journal of Pharmacy Research 7(9) 828835. doi:10.1016/j.jopr.2013.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SteinbacherP. & EcklP. (2015). Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5(2) 356377. PubMed ID: 25866921 doi:10.3390/biom5020356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StunesA.K.SyversenU.BerntsenS.PaulsenG.SteaT.H.HetlelidK.J.HaugebergG. (2017). High doses of vitamin C plus E reduce strength training-induced improvements in areal bone mineral density in elderly men. European Journal of Applied Physiology 117(6) 10731084. PubMed ID: 28382551 doi:10.1007/s00421-017-3588-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TorresM. & FormanH.J. (2003). Redox signaling and the MAP kinase pathways. BioFactors 17(1–4) 287296.

  • TrachoothamD.LuW.OgasawaraM.A.ValleN.R.-D. & HuangP. (2008). Redox regulation of cell survival. Antioxidants & Redox Signaling 10(8) 13431374. PubMed ID: 18522489 doi:10.1089/ars.2007.1957

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UpadhyayS. & DixitM. (2015). Role of polyphenols and other phytochemicals on molecular signaling. Oxidative Medicine and Cellular Longevity 2015504253. PubMed ID: 26180591 doi:10.1155/2015/504253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ViitalaP.E.NewhouseI.J.LaVoieN. & GottardoC. (2004). The effects of antioxidant vitamin supplementation on resistance exercise induced lipid peroxidation in trained and untrained participants. Lipids in Health and Disease 314. PubMed ID: 15212697 doi:10.1186/1476-511X-3-14

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VincentH.K.BourguignonC. & VincentK.R. (2006). Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity 14(11) 19211930. PubMed ID: 17135607 doi:10.1038/oby.2006.224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VincentK.R.VincentH.K.BraithR.W.LennonS.L. & LowenthalD.T. (2002). Resistance exercise training attenuates exercise-induced lipid peroxidation in the elderly. European Journal of Applied Physiology 87(4-5) 416423. PubMed ID: 12172882 doi:10.1007/s00421-002-0640-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WrayD.W.UberoiA.LawrensonL.BaileyD.M. & RichardsonR.S. (2009). Oral antioxidants and cardiovascular health in the exercise-trained and untrained elderly: A radically different outcome. Clinical Science 116(5) 433441. PubMed ID: 18795893 doi:10.1042/CS20080337

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 586 586 225
Full Text Views 67 67 19
PDF Downloads 50 50 13
Altmetric Badge
PubMed
Google Scholar