Hydration Marker Diagnostic Accuracy to Identify Mild Intracellular and Extracellular Dehydration

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Identifying mild dehydration (≤2% of body mass) is important to prevent the negative effects of more severe dehydration on human health and performance. It is unknown whether a single hydration marker can identify both mild intracellular dehydration (ID) and extracellular dehydration (ED) with adequate diagnostic accuracy (≥0.7 receiver-operating characteristic–area under the curve [ROC-AUC]). Thus, in 15 young healthy men, the authors determined the diagnostic accuracy of 15 hydration markers after three randomized 48-hr trials; euhydration (water 36 ml·kg−1·day−1), ID caused by exercise and 48 hr of fluid restriction (water 2 ml·kg−1·day−1), and ED caused by a 4-hr diuretic-induced diuresis begun at 44 hr (Furosemide 0.65 mg/kg). Body mass was maintained on euhydration, and dehydration was mild on ID and ED (1.9% [0.5%] and 2.0% [0.3%] of body mass, respectively). Urine color, urine specific gravity, plasma osmolality, saliva flow rate, saliva osmolality, heart rate variability, and dry mouth identified ID (ROC-AUC; range 0.70–0.99), and postural heart rate change identified ED (ROC-AUC 0.82). Thirst 0–9 scale (ROC-AUC 0.97 and 0.78 for ID and ED) and urine osmolality (ROC-AUC 0.99 and 0.81 for ID and ED) identified both dehydration types. However, only the thirst 0–9 scale had a common dehydration threshold (≥4; sensitivity and specificity of 100%; 87% and 71%, 87% for ID and ED). In conclusion, using a common dehydration threshold ≥4, the thirst 0–9 scale identified mild intracellular and ED with adequate diagnostic accuracy. In young healthy adults’, thirst 0–9 scale is a valid and practical dehydration screening tool.

Owen, Fortes, Walsh, and Oliver are with the College of Human Sciences, Bangor University, Bangor, United Kingdom. Ur Rahman and Jibani are with Gwynedd Hospital, Betsi Cadwaladr University Health Board, Bangor, United Kingdom.

Oliver (s.j.oliver@bangor.ac.uk) is corresponding author.
  • Armstrong, L.E. (2007). Assessing hydration status: The elusive gold standard. Journal of the American College of Nutrition, 26(Suppl. 5), 575S–584S. doi:10.1080/07315724.2007.10719661

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, L.E., Ganio, M.S., Klau, J.F., Johnson, E.C., Casa, D.J., & Maresh, C.M. (2014). Novel hydration assessment techniques employing thirst and a water intake challenge in healthy men. Applied Physiology, Nutrition, and Metabolism, 39(2), 138–144. PubMed ID: 24476468 doi:10.1139/apnm-2012-0369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, L.E., Maresh, C.M., Castellani, J.W., Bergeron, M.F., Kenefick, R.W., Lagasse, K.E., & Rebei, D. (1994). Urinary indices of hydration status. International Journal of Sport Nutrition and Exercise Metabolism, 4(3), 265–279. doi:10.1123/ijsn.4.3.265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartok, C., Schoeller, D.A., Sullivan, J.C., Clark, R.R., & Landry, G.L. (2004). Hydration testing in collegiate wrestlers undergoing hypertonic dehydration. Medicine and Science in Sports and Exercise, 36(3), 510–517. PubMed ID: 15076795 doi:10.1249/01.MSS.0000117164.25986.F6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charkoudian, N., Eisenach, J.H., Joyner, M.J., Roberts, S.K., & Wick, D.E. (2005). Interactions of plasma osmolality with arterial and central venous pressures in control of sympathetic activity and heart rate in humans. American Journal of Physiology. Heart and Circulatory Physiology, 289(6), H2456–H2460. PubMed ID: 16199481 doi:10.1152/ajpheart.00601.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheuvront, S.N., Ely, B.R., Kenefick, R.W., Buller, M.J., Charkoudian, N., & Sawka, M.N. (2012). Hydration assessment using the cardiovascular response to standing. European Journal of Applied Physiology, 112(12), 4081–4089. PubMed ID: 22481637 doi:10.1007/s00421-012-2390-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheuvront, S.N., Ely, B.R., Kenefick, R.W., & Sawka, M.N. (2010). Biological variation and diagnostic accuracy of dehydration assessment markers. American Journal of Clinical Nutrition, 92(3), 565–573. PubMed ID: 20631205 doi:10.3945/ajcn.2010.29490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheuvront, S.N., & Kenefick, R.W. (2014). Dehydration: Physiology, assessment, and performance effects. Comprehensive Physiology, 4(1), 257–285. PubMed ID: 24692140 doi:10.1002/cphy.c130017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotter, J.D., Thornton, S.N., Lee, J.K., & Laursen, P.B. (2014). Are we being drowned in hydration advice? Thirsty for more? Extreme Physiology & Medicine, 3(1), 1–15. doi:10.1186/2046-7648-3-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dill, D.B., & Costill, D.L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247–248. PubMed ID: 4850854 doi:10.1152/jappl.1974.37.2.247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ely, B.R., Cheuvront, S.N., Kenefick, R.W., Spitz, M.G., Heavens, K.R., Walsh, N.P., & Sawka, M.N. (2014). Assessment of extracellular dehydration using saliva osmolality. European Journal of Applied Physiology, 114(1), 85–92. PubMed ID: 24150781 doi:10.1007/s00421-013-2747-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engell, D.B., Maller, O., Sawka, M.N., Francesconi, R.N., Drolet, L., & Young, A.J. (1987). Thirst and fluid intake following graded hypohydration levels in humans. Physiology and Behaviour, 40(2), 229–236. doi:10.1016/0031-9384(87)90212-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzsimons, J.T. (1976). The physiological basis of thirst. Kidney International, 10(1), 3–11. PubMed ID: 781378 doi:10.1038/ki.1976.74

  • Fortes, M.B., Diment, B.C., Di Felice, U., Gunn, A.E., Kendall, J.L., Esmaeelpour, M., & Walsh, N.P. (2011). Tear fluid osmolarity as a potential marker of hydration status. Medicine and Science in Sports and Exercise, 43(8), 1590–1597. PubMed ID: 21233774 doi:10.1249/MSS.0b013e31820e7cb6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goulet, E.D.B. (2012). Effect of exercise-induced dehydration on endurance performance: Evaluating the impact of exercise protocols on outcomes using a meta-analytic procedure. British Journal of Sports Medicine, 47(11), 1–9. doi:10.1136/bjsports-2012-090958

    • Search Google Scholar
    • Export Citation
  • Hanley, J., & McNeil, B.I. (1983). A method of comparing the areas under Receiver Operating Characteristic curves derived from the same cases. Radiology, 148(3), 839–843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, A., & Benedict, F. (1918). A biometric study of human basal metabolism. Proceedings of the National Academy of Sciences U S A, 4(12), 370–373. doi:10.1073/pnas.4.12.370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hooper, L., Bunn, D.K., Abdelhamid, A., Gillings, R., Jennings, A., Maas, K., . . . Fairweather-Tait, S.J. (2016). Water-loss (intracellular) dehydration assessed using urinary tests: How well do they work? Diagnostic accuracy in older people. American Journal of Clinical Nutrition, 104(1), 121–131. PubMed ID: 27225436 doi:10.3945/ajcn.115.119925

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenney, W.L., & Chiu, P. (2001). Influence of age on thirst and fluid intake. Medicine and Science in Sports and Exercise, 33(9), 1524–1532. PubMed ID: 11528342. doi:10.1097/00005768-200109000-00016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marek, M. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381. doi:10.1093/oxfordjournals.eurheartj.a014868

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obuchowski, N.A., Lieber, M.L., & Wians, F.H. (2004). ROC curves in clinical chemistry: Uses, misuses, and possible solutions. Clinical Chemistry, 50(7), 1118–1125. PubMed ID: 15142978 doi:10.1373/clinchem.2004.031823

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, S.J., Laing, S.J., Wilson, S., Bilzon, J.L.J., & Walsh, N.P. (2007). Endurance running performance after 48 h of restricted fluid and/or energy intake. Medicine and Science in Sports and Exercise, 39(2), 316–322. PubMed ID: 17277596 doi:10.1249/01.mss.0000241656.22629.57

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, S.J., Laing, S.J., Wilson, S., Bilzon, J.L.J., & Walsh, N.P. (2008). Saliva indices track hypohydration during 48h of fluid restriction or combined fluid and energy restriction. Archives of Oral Biology, 53(10), 975–980. PubMed ID: 18555976 doi:10.1016/j.archoralbio.2008.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sands, J.M., & Layton, H.E. (2009). The physiology of urinary concentration: An update. Seminars in Nephrology, 29(3), 178–195. PubMed ID: 19523568 doi:10.1016/j.semnephrol.2009.03.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savoie, F.A., Kenefick, R.W., Ely, B.R., Cheuvront, S.N., & Goulet, E.D.B. (2015). Effect of hypohydration on muscle endurance, strength, anaerobic power and capacity and vertical jumping ability: A meta-analysis. Sports Medicine, 45(8), 1207–1227. PubMed ID: 26178327 doi:10.1007/s40279-015-0349-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawka, M. (1992). Physiological consequences of hypohydration: Exercise performance and thermoregulation. Medicine and Science in Sports and Exercise, 24(6), 657–670. PubMed ID: 1602938

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schisterman, E.F., Perkins, N.J., Liu, A., & Bondell, H. (2005). Optimal cut-point and its corresponding youden index to discriminate individuals using pooled blood samples. Epidemiology, 16(1), 73–81. PubMed ID: 15613948 doi:10.1097/01.ede.0000147512.81966.ba

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scully, C. (2003). Drug effects on salivary glands: Dry mouth. Oral Diseases, 9(4), 165–176. PubMed ID: 12974516 doi:10.1034/j.1601-0825.2003.03967.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirreffs, S.M., Merson, S.J., Fraser, S.M., & Archer, D.T. (2004). The effects of fluid restriction on hydration status and subjective feelings in man. The British Journal of Nutrition, 91(6), 951–958. PubMed ID: 15182398 doi:10.1079/BJN20041149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauss, M.B., Davis, R.K., Rosenbaum, J.D., & Rossmeil, E.C. (1951). Production of increased renal sodium excretion by the hypotonic expansion of extracellular fluid volume in recumbent subjects. Journal of Clinical Investigation, 30(8), 862–868. PubMed ID: 14861307 doi:10.1172/JCI102501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todorovic, V., & Micklewright, A. (2004). The parenteral and enteral nutrition group of British Dietetics Association: A pocket guide to clinical nutrition. London, UK: British Dietetics Association.

    • Search Google Scholar
    • Export Citation
  • Walsh, N.P., Laing, S., Oliver, S., Montague, J., Walters, R., & Bilzon, J.J. (2004). Saliva parameters as potential indices of hydration status during acute dehydration. Medicine & Science in Sports & Exercise, 36(9), 1535–1542. PubMed ID: 15354035 doi:10.1249/01.MSS.0000139797.26760.06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zerbe, R., & Robertson, G. (1983). Osmoregulation of thirst and vasopressin secretion in human subjects: Effect of various solutes. American Journal of Physiology, 244(6), E607-14. PubMed ID: 6407333

    • Search Google Scholar
    • Export Citation
  • Zweig, H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39(4), 561–577. PubMed ID: 8472349

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 512 512 405
Full Text Views 28 28 11
PDF Downloads 25 25 12