Basal Serum Cortisol and Testosterone/Cortisol Ratio Are Related to Rate of Na+ Lost During Exercise in Elite Soccer Players

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

During exercise, the human body maintains optimal body temperature through thermoregulatory sweating, which implies the loss of water, sodium (Na+), and other electrolytes. Sweat rate and sweat Na+ concentration show high interindividual variability, even in individuals exercising under similar conditions. Testosterone and cortisol may regulate sweat Na+ loss by modifying the expression/activity of the cystic fibrosis transmembrane conductance regulator. This has not been tested. As a first approximation, the authors aimed to determine whether basal serum concentrations of testosterone or cortisol, or the testosterone/cortisol ratio relate to sweat Na+ loss during exercise. A total of 22 male elite soccer players participated in the study. Testosterone and cortisol were measured in blood samples before exercise (basal). Sweat samples were collected during a training session, and sweat Na+ concentration was determined. The basal serum concentrations of testosterone and cortisol and their ratio were (mean [SD]) 13.6 (3.3) pg/ml, 228.9 (41.4) ng/ml, and 0.06 (0.02), respectively. During exercise, the rate of Na+ loss was related to cortisol (r = .43; p < .05) and to the testosterone/cortisol ratio (r = −.46; p < .01), independently of the sweating rate. The results suggest that cortisol and the testosterone/cortisol ratio may influence Na+ loss during exercise. It is unknown whether this regulation depends on the cystic fibrosis transmembrane conductance regulator.

Castro-Sepulveda, Cancino, Jannas-Vela, and Zbinden-Foncea are with the Laboratorio de Ciencias del Ejercicio, Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile. Fernández-Verdejo is with the Departamento de Ciencias de la Salud, Carrera de Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile. Pérez-Luco is with the Carrera Preparador Fisico, Centro de Formacion Tecnica Santo Tomas, Santiago, Chile. Ramirez-Campillo is with the Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile. Del Coso is with the Laboratorio de Fisiología del Ejercicio, Universidad Camilo José Cela, Madrid, Spain. Zbinden-Foncea is also with the Centro de Salud Deportiva, Clínica Santa Maria, Santiago, Chile.

Castro-Sepulveda (mcastro@uft.cl) is the corresponding author.
  • Baker, L.B. (2017). Sweating rate and sweat sodium concentration in athletes: A review of methodology and intra/interindividual variability. Sports Medicine, 47(Suppl. 1), 111128. PubMed ID: 28332116. doi:10.1007/s40279-017-0691-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, L.B., Stofan, J.R., Hamilton, A.A., & Horswill, C.A. (2009). Comparison of regional patch collection vs. whole body washdown for measuring sweat sodium and potassium loss during exercise. Journal of Applied Physiology, 107(3), 887895. doi:10.1152/japplphysiol.00197.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, L.B., Ungaro, C.T., Barnes, K.A., Nuccio, R.P., Reimel, A.J., & Stofan, J.R. (2014). Validity and reliability of a field technique for sweat Na+ and K+ analysis during exercise in a hot-humid environment. Physiological Reports, 2(5), e12007. PubMed ID: 24793982. doi:10.14814/phy2.12007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M.B., Haack, K.K., Pollack, B.P., Millard-Stafford, M., & McCarty, N.A. (2011). Low abundance of sweat duct Cl– channel CFTR in both healthy and cystic fibrosis athletes with exceptionally salty sweat during exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(3), R605R615. PubMed ID: 21228336. doi:10.1152/ajpregu.00660.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buono, M.J., Ball, K.D., & Kolkhorst, F.W. (2007). Sodium ion concentration vs. sweat rate relationship in humans. Journal of Applied Physiology, 103(3), 990–994. doi:10.1152/japplphysiol.00015.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro-Sepulveda, M., Astudillo, S., Alvarez, C., Zapata-Lamana, R., Zbinden-Foncea, H., Ramirez-Campillo, R., & Jorquera, C. (2015). Prevalence of dehydration before training in professional Chilean soccer players. Nutricion Hospitalaria, 32(1), 308311. PubMed ID: 26262731.

    • Search Google Scholar
    • Export Citation
  • Del Coso, J., Estevez, E., Baquero, R.A., & Mora-Rodriguez, R. (2008). Anaerobic performance when rehydrating with water or commercially available sports drinks during prolonged exercise in the heat. Applied Physiology, Nutrition, and Metabolism, 33(2), 290–298. doi:10.1139/H07-188

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Coso, J., Lara, B., Salinero, J., Areces, F., Ruiz-Vicente, D., Gallo-Salazar, C., . . . Cacabelos, R. (2016). CFTR genotype‐related body water and electrolyte balance during a marathon. Scandinavian Journal of Medicine & Science in Sports, 26(9), 10361044. PubMed ID: 26282188. doi:10.1111/sms.12542

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleeson, M. (1998). Temperature regulation during exercise. International Journal of Sports Medicine, 19(Suppl. 2), S96S99. doi:10.1055/s-2007-971967

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, L.D., Grace, F.M., Baker, J.S., & Sculthorpe, N. (2015). Exercise-induced responses in salivary testosterone, cortisol, and their ratios in men: A meta-analysis. Sports Medicine, 45(5), 713726. PubMed ID: 25655373. doi:10.1007/s40279-015-0306-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hew-Butler, T., Hummel, J., Rider, B.C., & Verbalis, J.G. (2014). Characterization of the effects of the vasopressin V2 receptor on sweating, fluid balance, and performance during exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 307(4), R366–375. doi:10.1152/ajpregu.00120.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holguin, F. (2018). Triple CFTR modulator therapy for cystic fibrosis. The New England Journal of Medicine, 379 , 16711672. PubMed ID: 30334694. doi:10.1056/NEJMe1811996

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, N., Bates, G., Zhao, Y., Sherriff, J., & Miller, V. (2016). The effect of exercise intensity on sweat rate and sweat sodium and potassium losses in trained endurance athletes. Annals of Sports Medicine and Research, 3(2), 14.

    • Search Google Scholar
    • Export Citation
  • Horswill, C.A., Stofan, J.R., Lacambra, M., Toriscelli, T.A., Eichner, E.R., & Murray, R. (2009). Sodium balance during U. S. football training in the heat: Cramp-prone vs. reference players. International Journal of Sports Medicine, 2;30(11), 789–794. PubMed ID: 19777422. doi:10.1055/s-0029-1234056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khadijah Ramli, N.S., Giribabu, N., & Salleh, N. (2018). Testosterone enhances expression and functional activity of epithelial sodium channel (ENaC), cystic fibrosis transmembrane regulator (CFTR) and sodium hydrogen exchanger (NHE) in vas deferens of sex-steroid deficient male rats. Steroids, 138 , 117133. PubMed ID: 30003911. doi:10.1016/j.steroids.2018.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lara, B., Gallo-Salazar, C., Puente, C., Areces, F., Salinero, J.J., & Del Coso, J. (2016). Interindividual variability in sweat electrolyte concentration in marathoners. Journal of the International Society of Sports Nutrition, 13(1), 31. doi:10.1186/s12970-016-0141-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laube, M., Bossmann, M., & Thome, U.H. (2015). Glucocorticoids distinctively modulate the CFTR channel with possible implications in lung development and transition into extrauterine life. PLoS ONE, 10(4), e0124833. PubMed ID: 25910246. doi:10.1371/journal.pone.0124833

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marler, C.A., Bester-Meredith, J.K., & Trainor, B.C. (2003). Paternal behavior and aggression: Endocrine mechanisms and nongenomic transmission of behavior. Advances in the Study of Behavior, 32 , 263323. doi:10.1016/S0065-3454(03)01006-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J., Merson, S.J., Broad, N.P., & Shirreffs, S.M. (2004). Fluid and electrolyte intake and loss in elite soccer players during training. International Journal Sport Nutrition and Exercise Metabolism, 14(3), 333346. doi:10.1123/ijsnem.14.3.333

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papanek, P.E., & Raff, H. (1994). Physiological increases in cortisol inhibit basal vasopressin release in conscious dogs. American Journal of Physiology, 266 , R1744–R1751. PubMed ID: 8024023.

    • Search Google Scholar
    • Export Citation
  • Reddy, M.M., & Quinton, P.M. (2003). Functional interaction of CFTR and ENaC in sweat glands. Pflugers Archiv, 445(4), 499503. PubMed ID: 12548396. doi:10.1007/s00424-002-0959-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirreffs, S.M., Aragon-Vargas, L.F., Chamorro, M., Maughan, R.J., Serratosa, L., & Zachwieja, JJ. (2005). The sweating response of elite professional soccer players to training in the heat. International Journal of Sports Medicine, 26(2), 90–95. PubMed ID: 15726482. doi:10.1055/s-2004-821112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirreffs, S.M., Sawka, M.N., & Stone, M. (2006). Water and electrolyte needs for football training and match-play. Journal of Sports Sciences, 24(7), 699707. PubMed ID: 16766499. doi:10.1080/02640410500482677

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slimani, M., Baker, J.S., Cheour, F., Taylor, L., & Bragazzi, N.L. (2017). Steroid hormones and psychological responses to soccer matches: Insights from a systematic review and meta-analysis. PLoS ONE, 12(10), e0186100. PubMed ID: 29023546. doi:10.1371/journal.pone.0186100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strazzullo, P., & Leclercq, C. (2014). Sodium. Advances in Nutrition, 5(2), 188–190. PubMed ID: 24618759. doi:10.3945/an.113.005215

  • Turner, M.J., & Avolio, A.P. (2016). Does replacing sodium excreted in sweat attenuate the health benefits of physical activity? International Journal Sport Nutrition and Exercise Metabolism, 26(4), 377–389. PubMed ID: 26841436. doi:10.1123/ijsnem.2015-0233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weschler, L.B. (2008). Sweat electrolyte concentrations obtained from within occlusive coverings are falsely high because sweat itself leaches skin electrolytes. Journal of Applied Physiology, 105(4), 13761377. doi:10.1152/japplphysiol.90544.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, T., Shin-ya, H., Nakai, S., Yorimoto, A., Morimoto, T., Suyama, T., & Sakurai, M. (2006). Genomic and non-genomic effects of aldosterone on the individual variation of the sweat Na+ concentration during exercise in trained athletes. European Journal of Applied Physiology, 98(5), 466–471. PubMed ID: 16977480. doi:10.1007/s00421-006-0295-5

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1392 1392 27
Full Text Views 28 28 0
PDF Downloads 19 19 0