Hepcidin as a Prospective Individualized Biomarker for Individuals at Risk of Low Energy Availability

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Claire E. BadenhorstMassey University

Search for other papers by Claire E. Badenhorst in
Current site
Google Scholar
PubMed
Close
*
,
Katherine E. BlackUniversity of Otago

Search for other papers by Katherine E. Black in
Current site
Google Scholar
PubMed
Close
*
, and
Wendy J. O’BrienMassey University

Search for other papers by Wendy J. O’Brien in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Hepcidin, a peptide hormone with an acknowledged evolutionary function in iron homeostasis, was discovered at the turn of the 21st century. Since then, the implications of increased hepcidin activity have been investigated as a potential advocate for the increased risk of iron deficiency in various health settings. Such implications are particularly relevant in the sporting community where peaks in hepcidin postexercise (∼3–6 hr) are suggested to reduce iron absorption and recycling, and contribute to the development of exercise-induced iron deficiency in athletes. Over the last decade, hepcidin research in sport has focused on acute and chronic hepcidin activity following single and repeated training blocks. This research has led to investigations examining possible methods to attenuate postexercise hepcidin expression through dietary interventions. The majority of macronutrient dietary interventions have focused on manipulating the carbohydrate content of the diet in an attempt to determine the health of athletes adopting the low-carbohydrate or ketogenic diets, a practice that is a growing trend among endurance athletes. During the process of these macronutrient dietary intervention studies, an observable coincidence of increased cumulative hepcidin activity to low energy availability has emerged. Therefore, this review aims to summarize the existing literature on nutritional interventions on hepcidin activity, thus, highlighting the link of hepcidin to energy availability, while also making a case for the use of hepcidin as an individualized biomarker for low energy availability in males and females.

Badenhorst and O’Brien are with the School of Sport, Exercise and Nutrition, College of Health, Massey University, North Shore City, Auckland, New Zealand. Black is with the Department of Human Nutrition, University of Otago, Dunedin, New Zealand.

Badenhorst (C.Badenhorst@massey.ac.nz) is the corresponding author.
  • Collapse
  • Expand
  • Arezes, J., & Nemeth, E. (2015). Hepcidin and iron disorders: New biology and clinical approaches. International Journal of Laboratory Hematology, 37(S1), 9298. doi:10.1111/ijlh.12358

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auersperger, I., Knap, B., Jerin, A., Blagus, R., Lainscak, M., Skitek, M., & Skof, B. (2012). The effects of 8 weeks of endurance running on hepcidin concentrations, inflammatory parameters, and iron status in female runners. International Journal of Sport Nutrition and Exercise Metabolism, 22(1), 5563. PubMed ID: 22248501 doi:10.1123/ijsnem.22.1.55

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auersperger, I., Škof, B., Leskošek, B., Knap, B., Jerin, A., & Lainscak, M. (2013). Exercise-induced changes in iron status and hepcidin response in female runners. PLoS ONE, 8(3), e58090. PubMed ID: 23472137 doi:10.1371/journal.pone.0058090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacchetta, J., Zaritsky, J.J., Sea, J.L., Chun, R.F., Lisse, T.S., Zavala, K., . . . Hewison, M. (2014). Suppression of iron-regulatory hepcidin by vitamin D. Journal of the American Society of Nephrology, 25(3), 564572. PubMed ID: 31015256 doi:10.1681/ASN.2013040355

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badenhorst, C.E., Dawson, B., Cox, G.R., Laarakkers, C.M., Swinkels, D.W., & Peeling, P. (2015a). Acute dietary carbohydrate manipulation and the subsequent inflammatory and hepcidin responses to exercise. European Journal of Applied Physiology, 115(12), 25212530. PubMed ID: 26335627 doi:10.1007/s00421-015-3252-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badenhorst, C.E., Dawson, B., Cox, G.R., Laarakkers, C.M., Swinkels, D.W., & Peeling, P. (2015b). Timing of post-exercise carbohydrate ingestion: Influence on IL-6 and hepcidin responses. European Journal of Applied Physiology, 115(10), 22152222. PubMed ID: 26084589 doi:10.1007/s00421-015-3202-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badenhorst, C.E., Dawson, B., Cox, G.R., Sim, M., Laarakkers, C.M., Swinkels, D.W., & Peeling, P. (2016). Seven days of high carbohydrate ingestion does not attenuate post-exercise IL-6 and hepcidin levels. European Journal of Applied Physiology, 116(9), 17151724. PubMed ID: 27379793 doi:10.1007/s00421-016-3426-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M., Close, G.L., Lundy, B., Mooses, M., Morton, J.P., & Tenforde, A.S. (2018a). Relative energy deficiency in sport in male athletes: A commentary on its presentation among selected groups of male athletes. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 364374. PubMed ID: 30040508 doi:10.1123/ijsnem.2018-0182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M., Hawley, J.A., Jeukendrup, A., Morton, J.P., Stellingwerff, T., & Maughan, R.J. (2018b). Toward a common understanding of diet-exercise strategies to manipulate fuel availability for training and competition preparation in endurance sport. International Journal of Sport Nutrition and Exercise Metabolism, 28(5), 451463. PubMed ID: 30249148 doi:10.1123/ijsnem.2018-0289

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M., Lundy, B., Fahrenholtz, I.L., & Melin, A.K. (2018c). Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 350363. PubMed ID: 30029584 doi:10.1123/ijsnem.2018-0142

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M., Ross, M.L., Garvican-Lewis, L.A., Welvaert, M., Heikura, I.A., Forbes, S.G., . . . Hawley, J.A. (2017). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. The Journal of Physiology, 595(9), 27852807. PubMed ID: 28012184 doi:10.1113/JP273230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahlquist, D.T., Dieter, B.P., & Koehle, M.S. (2015). Plausible ergogenic effects of vitamin D on athletic performance and recovery. Journal of the International Society of Sports Nutrition, 12(1), 33. doi:10.1186/s12970-015-0093-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahlquist, D.T., Stellingwerff, T., Dieter, B.P., McKenzie, D.C., & Koehle, M.S. (2017). Effects of macro- and micronutrients on exercise-induced hepcidin response in highly trained endurance athletes. Applied Physiology, Nutrition, and Metabolism, 42(10), 10361043. PubMed ID: 28605609 doi:10.1139/apnm-2017-0207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domínguez, R., Vincente-Campos, D., & Chicharro, J.L. (2014). Hepcidin response to exercise: A review. Turkish Journal of Endocrinology and Metabolism, 18(3), 8491. doi:10.4274/tjem.2438

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott-Sale, K.J., Tenforde, A.S., Parziale, A.L., Holtzman, B., & Ackerman, K.E. (2018). Endocrine effects of relative energy deficiency in sport. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 335349. PubMed ID: 30008240 doi:10.1123/ijsnem.2018-0127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganz, T. (2011). Hepcidin and iron regulation, 10 years later. Blood, 117(17), 44254433. PubMed ID: 21346250 doi:10.1182/blood-2011-01-258467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govus, A.D., Peeling, P., Abbiss, C.R., Lawler, N.G., Swinkels, D.W., Laarakkers, C.M., . . . Garvican-Lewis, L.A. (2017). Live high, train low: Influence on resting and post-exercise hepcidin levels. Scandinavian Journal of Medicine & Science in Sports, 27(7), 704713. PubMed ID: 27038097 doi:10.1111/sms.12685

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hare, D.J. (2017). Hepcidin: A real-time biomarker of iron need. Metallomics, 9(6), 606618. PubMed ID: 28470295 doi:10.1039/C7MT00047B

  • Hawley, J.A., Lundby, C., Cotter, J.D., & Burke, L.M. (2018). Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell Metabolism, 27(5), 962976. PubMed ID: 29719234 doi:10.1016/j.cmet.2018.04.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawley, J.A., Schabort, E.J., Noakes, T.D., & Dennis, S.C. (1997). Carbohydrate-loading and exercise performance. An update. Sports Medicine, 24(2), 7381. doi:10.2165/00007256-199724020-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennigar, S.R., McClung, J.P., & Pasiakos, S.M. (2017). Nutritional interventions and the IL-6 response to exercise. The FASEB Journal, 31(9), 37193728. PubMed ID: 28507168 doi:10.1096/fj.201700080R

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishibashi, A., Maeda, N., Sumi, D., & Goto, K. (2017). Elevated serum hepcidin levels during an intensified training period in well-trained female long-distance runners. Nutrients, 9(3), 277. doi:10.3390/nu9030277

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivy, J.L., Katz, A.L., Cutler, C.L., Sherman, W.M., & Coyle, E.F. (1988). Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. Journal of Applied Physiology, 64(4), 14801485. PubMed ID: 26806874 doi:10.1152/jappl.1988.64.4.1480

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, C., Steensberg, A., Pilegaard, H., Osada, T., Saltin, B., Pedersen, B.K., & Neufer, P.D. (2001). Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: Influence of muscle glycogen content. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 15(14), 27482750. PubMed ID: 31017817 doi:10.1096/fj.01-0507fje

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kroot, J.J., Kemna, E.H., Bansal, S.S., Busbridge, M., Campostrini, N., Girelli, D., . . . Swinkels, D.W. (2009). Results of the first international round robin for the quantification of urinary and plasma hepcidin assays: Need for standardization. Haematologica, 94(12), 17481752. PubMed ID: 19996119 doi:10.3324/haematol.2009.010322

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leuenberger, N., Bulla, E., Salamin, O., Nicoli, R., Robinson, N., Baume, N., & Saugy, M. (2017). Hepcidin as a potential biomarker for blood doping. Drug Testing and Analysis, 9(7), 10931097. PubMed ID: 27758046 doi:10.1002/dta.2122

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J., Handschin, C., & Spiegelman, B.M. (2005). Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabolism, 1(6), 361370. PubMed ID: 16054085 doi:10.1016/j.cmet.2005.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loucks, A.B. (2004). Energy balance and body composition in sports and exercise. Journal of Sports Sciences, 22(1), 114. PubMed ID: 14974441 doi:10.1080/0264041031000140518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margolis, L.M., Murphy, N.E., Martini, S., Gundersen, Y., Castellani, J.W., Karl, J.P., . . . Pasiakos, S.M. (2016). Effects of supplemental energy on protein balance during 4-d arctic military training. Medicine and Science in Sports and Exercise, 48(8), 16041612. PubMed ID: 27054679 doi:10.1249/MSS.0000000000000944

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClung, J.P., Martini, S., Murphy, N.E., Montain, S.J., Margolis, L.M., Thrane, I., . . . Pasiakos, S.M. (2013). Effects of a 7-day military training exercise on inflammatory biomarkers, serum hepcidin, and iron status. Nutrition Journal, 12(1), 141. PubMed ID: 24188143 doi:10.1186/1475-2891-12-141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A., Peeling, P., Pyne, D.B., Welvaert, M., Tee, N., Leckey, J.J., . . . Burke, L.M. (2019). Chronic adherence to a ketogenic diet modifies iron metabolism in elite athletes. Medicine and Science in Sports and Exercise, 51(3), 548555. PubMed ID: 30363006 doi:10.1249/MSS.0000000000001816

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melin, A., Tornberg, A.B., Skouby, S., Faber, J., Ritz, C., Sjödin, A., & Sundgot-Borgen, J. (2014). The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. British Journal of Sports Medicine, 48(7), 540545. PubMed ID: 24563388 doi:10.1136/bjsports-2013-093240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mielgo-Ayuso, J., Zourdos, M., Calleja-González, J., Córdova, A., Fernandez-Lázaro, D., & Caballero-García, A. (2018). Eleven weeks of iron supplementation does not maintain iron status for an entire competitive season in elite female volleyball players: A follow-up study. Nutrients, 10(10), 1526. doi:10.3390/nu10101526

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mielgo-Ayuso, J., Zourdos, M.C., Calleja-González, J., Urdampilleta, A., & Ostojic, S. (2015). Iron supplementation prevents a decline in iron stores and enhances strength performance in elite female volleyball players during the competitive season. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 40(6), 615622. PubMed ID: 25965846 doi:10.1139/apnm-2014-0500

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountjoy, M.L., Burke, L.M., Stellingwerff, T., & Sundgot-Borgen, J. (2018). Relative energy deficiency in sport: The tip of an iceberg. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 313315. PubMed ID: 29972091 doi:10.1123/ijsnem.2018-0149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieman, D.C., Nehlsen-Cannarella, S.L., Fagoaga, O.R., Henson, D.A., Utter, A., Davis, J.M., . . . Butterworth, D.E. (1998). Influence of mode and carbohydrate on the cytokine response to heavy exertion. Medicine and Science in Sports and Exercise, 30(5), 671678. PubMed ID: 9588607 doi:10.1097/00005768-199805000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papillard-Marechal, S., Sznajder, M., Hurtado-Nedelec, M., Alibay, Y., Martin-Schmitt, C., Dehoux, M., . . . Stheneur, C. (2012). Iron metabolism in patients with anorexia nervosa: Elevated serum hepcidin concentrations in the absence of inflammation. The American Journal of Clinical Nutrition, 95(3), 548554. PubMed ID: 22301927 doi:10.3945/ajcn.111.025817

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasiakos, S.M., Margolis, L.M., Murphy, N.E., McClung, H.L., Martini, S., Gundersen, Y., . . . McClung, J.P. (2016). Effects of exercise mode, energy, and macronutrient interventions on inflammation during military training. Physiological Reports, 4(11), e12820. PubMed ID: 27273884 doi:10.14814/phy2.12820

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P. (2010). Exercise as a mediator of hepcidin activity in athletes. European Journal of Applied Physiology, 110(5), 877883. PubMed ID: 20697906 doi:10.1007/s00421-010-1594-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Dawson, B., Goodman, C., Landers, G., Wiegerinck, E.T., Swinkels, D.W., & Trinder, D. (2009a). Effects of exercise on hepcidin response and iron metabolism during recovery. International Journal of Sport Nutrition and Exercise Metabolism, 19(6), 583597. doi:10.1123/ijsnem.19.6.583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Dawson, B., Goodman, C., Landers, G., Wiegerinck, E.T., Swinkels, D.W., & Trinder, D. (2009b). Training surface and intensity: Inflammation, hemolysis, and hepcidin expression. Medicine and Science in Sports and Exercise, 41(5), 11381145. doi:10.1249/MSS.0b013e318192ce58

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., McKay, A.K.A., Pyne, D.B., Guelfi, K.J., McCormick, R.H., Laarakkers, C.M., . . . Burke, L.M. (2017). Factors influencing the post-exercise hepcidin-25 response in elite athletes. European Journal of Applied Physiology, 117(6), 12331239. PubMed ID: 28409396 doi:10.1007/s00421-017-3611-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Sim, M., Badenhorst, C.E., Dawson, B., Govus, A.D., Abbiss, C.R., . . . Trinder, D. (2014). Iron status and the acute post-exercise hepcidin response in athletes. PLoS ONE, 9(3), e93002. PubMed ID: 24667393 doi:10.1371/journal.pone.0093002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, B., Sugianto, P., Fung, E., del-Castillo-Rueda, A., Moran-Jimenez, M.-J., Ganz, T., & Nemeth, E. (2012). Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metabolism, 15(6), 918924. PubMed ID: 22682227 doi:10.1016/j.cmet.2012.03.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reddi, K., Henderson, B., Meghji, S., Wilson, M., Poole, S., Hopper, C., . . . Hodges, S.J. (1995). Interleukin 6 production by lipopolysaccharide-stimulated human fibroblasts is potently inhibited by Naphthoquinone (vitamin K) compounds. Cytokine, 7(3), 287290. PubMed ID: 7640347 doi:10.1006/cyto.1995.0034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson-Ansley, P., Walshe, I., & Ward, D. (2011). The effect of carbohydrate ingestion on plasma interleukin-6, hepcidin and iron concentrations following prolonged exercise. Cytokine, 53(2), 196200. PubMed ID: 21095135 doi:10.1016/j.cyto.2010.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scarpulla, R.C. (2008). Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Annals of the New York Academy of Sciences, 1147 ,321334. PubMed ID: 19076454 doi:10.1196/annals.1427.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, M., Dawson, B., Landers, G.J., Swinkels, D.W., Tjalsma, H., Wiegerinck, E.T., . . . Peeling, P. (2014). A seven day running training period increases basal urinary hepcidin levels as compared to cycling. Journal of the International Society of Sports Nutrition, 11(1), 14. PubMed ID: 24716892 doi:10.1186/1550-2783-11-14

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, M., Dawson, B., Landers, G., Wiegerinck, E.T., Swinkels, D.W., Townsend, M.-A., . . . Peeling, P. (2012). The effects of carbohydrate ingestion during endurance running on post-exercise inflammation and hepcidin levels. European Journal of Applied Physiology, 112(5), 18891898. PubMed ID: 21922263 doi:10.1007/s00421-011-2156-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steensberg, A., Febbraio, M., Osada, T., Schjerling, P., van Hall, G., Saltin, B., & Pedersen, B.K. (2001). Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. The Journal of Physiology, 537(Pt. 2), 633639. PubMed ID: 11731593 doi:10.1111/j.1469-7793.2001.00633.x Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2278951&tool=pmcentrez&rendertype=abstract

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomczyk, M., Kortas, J., Flis, D., Skrobot, W., Camilleri, R., & Antosiewicz, J. (2017). Simple sugar supplementation abrogates exercise-induced increase in hepcidin in young men. Journal of the International Society of Sports Nutrition, 14(1), 10. doi:10.1186/s12970-017-0169-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Vorm, L.N., Hendriks, J.C.M., Laarakkers, C.M., Klaver, S., Armitage, A.E., Bamberg, A., . . . Swinkels, D.W. (2016). Toward worldwide hepcidin assay harmonization: Identification of a commutable secondary reference material. Clinical Chemistry, 62(7), 9931001. PubMed ID: 27173010 doi:10.1373/clinchem.2016.256768

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, C., Montosi, G., Garuti, C., Corradini, E., Sabelli, M., Canali, S., & Pietrangelo, A. (2014). Gluconeogenic signals regulate iron homeostasis via hepcidin in mice. Gastroenterology, 146(4), 10601069. PubMed ID: 24361124 doi:10.1053/j.gastro.2013.12.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, C., Montosi, G., Zhang, K., Lamberti, I., Duncan, S.A., Kaufman, R.J., & Pietrangelo, A. (2009). ER stress controls iron metabolism through induction of hepcidin. Science, 325(5942), 877880. doi:10.1126/science.1176639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volek, J.S., Noakes, T., & Phinney, S.D. (2015). Rethinking fat as a fuel for endurance exercise. European Journal of Sport Science, 15(1), 1320. PubMed ID: 25275931 doi:10.1080/17461391.2014.959564

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4181 1152 96
Full Text Views 227 38 1
PDF Downloads 214 52 1