Enteric-Coated Sodium Bicarbonate Attenuates Gastrointestinal Side-Effects

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Edge Hill University
  • | 2 Liverpool Heart and Chest Hospital NHS Foundation Trust
  • | 3 University of Johannesburg
Restricted access

Enteric-formulated capsules can mitigate gastrointestinal (GI) side effects following sodium bicarbonate (NaHCO3) ingestion; however, it remains unclear how encapsulation alters postingestion symptoms and acid–base balance. The current study aimed to identify the optimal ingestion form to mitigate GI distress following NaHCO3 ingestion. Trained males (n = 14) ingested 300 mg/kg body mass of NaHCO3 in gelatin (GEL), delayed-release (DEL), and enteric-coated (ENT) capsules or a placebo in a randomized cross-over design. Blood bicarbonate anion concentration, potential hydrogen, and GI symptoms were measured pre- and postingestion for 3 hr. Fewer GI symptoms were reported with ENT NaHCO3 than with GEL (p = .012), but not with DEL (p = .106) in the postingestion phase. Symptom severity decreased with DEL (4.6 ± 2.8 arbitrary units) compared with GEL (7.0 ± 2.6 arbitrary units; p = .001) and was lower with ENT (2.8 ± 1.9 arbitrary units) compared with both GEL (p < .0005) and DEL (p = .044) NaHCO3. Blood bicarbonate anion concentration increased in all NaHCO3 conditions compared with the placebo (p < .0005), although this was lower with ENT than with GEL (p = .001) and DEL (p < .0005) NaHCO3. Changes in blood potential hydrogen were reduced with ENT compared with GEL (p = .047) and DEL (p = .047) NaHCO3, with no other differences between the conditions. Ingestion of ENT NaHCO3 attenuates GI disturbances for up to 3 hr postingestion. Therefore, ENT ingestion forms may be favorable for those who report GI disturbances with NaHCO3 supplementation or for those who have previously been deterred from its use altogether.

Hilton, Leach, Sparks, and McNaughton are with the Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom. Craig is with the Therapies Department, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, United Kingdom. McNaughton is also with the Department of Sport and Movement Studies, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa.

Hilton (hiltonn@edgehill.ac.uk) is corresponding author.
  • Atkinson, G. (2002). Analysis of repeated measurements in physical therapy research: Multiple comparisons amongst level means and multi-factorial designs. Physical Therapy in Sport, 3, 191203. doi:10.1054/ptsp.2002.0123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbosa, J.A.C., Conway, B.R., & Merchant, H.A. (2017). Going natural: Using polymers from nature for gastroresistant applications. British Journal of Pharmacy, 2, 1430. doi:10.5920/bjpharm.2017.01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M., & Pyne, D.B. (2007). Bicarbonate loading to enhance training and competitive performance. International Journal of Sports Physiology and Performance, 2, 9397. PubMed ID: 19255457 doi:10.1123/ijspp.2.1.93

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cameron, S.L., Mclay-Cooke, R.T., Brown, R.C., Gray, A.R., & Fairbairn, K.A. (2010). Increased blood pH but not performance with sodium bicarbonate supplementation in elite rugby union players. International Journal of Sport Nutrition and Exercise Metabolism, 20, 307321. PubMed ID: 20739719 doi:10.1123/ijsnem.20.4.307

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, A.J., Hopkins, W.G., & Gore, C.J. (2011a). Effects of acute alkalosis and acidosis on performance: A meta-analysis. Sports Medicine, 41, 801814. doi:10.2165/11591440-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, A.J., Slater, G.J., Gore, C.J., Dawson, B., & Burke, L.M. (2011b). Effect of Sodium Bicarbonate on [HCO3–], pH, and gastrointestinal symptoms. International Journal of Sport Nutrition and Exercise Metabolism, 21, 189194. doi:10.1123/ijsnem.21.3.189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

  • Deb, S.K., Gough, L.A., Sparks, S.A., & McNaughton, L.R. (2018). Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions. European Journal of Applied Physiology, 118, 607615. PubMed ID: 29344729 doi:10.1007/s00421-018-3801-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DePauw, K., Roelands, B., Cheung, S.S., de Geus, B., Rietjens, G., & Meeusen, R. (2013). Guidelines to classify subject groups in sport-science research. International Journal of Sports Physiology and Performance, 8, 111122. doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driller, M.W., Gregory, J.R., Williams, A.D., & Fell, J.W. (2012). The effects of serial and acute NaHCO3 loading in well-trained cyclists. The Journal of Strength and Conditioning Research, 26, 27912797. PubMed ID: 23001395 doi:10.1519/JSC.0b013e318241e18a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froio de Araujo Dias, G., da Eira Silva, V., de Salles Painelli, V., Sale, C., Artioli, G., Gualano, B., . . . Earnest, C.P. (2015). (In)Consistencies in responses to sodium bicarbonate supplementation: A randomised, repeated measures, counterbalanced and double-blind study. PLoS One, 10, e0143086. doi:10.1371/journal.pone.0143086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, L.A., Deb, S.K., Sparks, S.A., & McNaughton, L. (2017). The reproducibility of blood acid base responses in male collegiate athletes following individualised doses of sodium bicarbonate: A randomised controlled crossover study. Sports Medicine, 47, 21172127. PubMed ID: 28229390 doi:10.1007/s40279-017-0699-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, L.A., Deb, S.K., Sparks, S.A., & McNaughton, L. (2018). Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists. Journal of sports Sciences, 36, 17051712. PubMed ID: 29183257 doi:10.1080/02640414.2017.1410875

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grafen, A., & Hails, R. (2002). Modern statistics for the life sciences. Oxford, UK: Oxford University Press

  • Heibel, A.B., Perim, P.H.L., Oliveira, L.F., McNaughton, L.R., & Saunders, B. (2018). Time to optimize supplementation: Modifying factors influencing the individual responses to extracellular buffering agents. Frontiers in Nutrition, 5, 112. doi:10.3389/fnut.2018.00035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilton, N.P., Leach, N.K., Sparks, S.A., Gough, L.A., Craig, M.M., Deb, S.K., & McNaughton, L.R. (2019). A novel ingestion strategy for sodium bicarbonate in a delayed-release form: A randomised crossover study in trained males. Sports Medicine–Open, 4, 18. PubMed ID: 31494970

    • Search Google Scholar
    • Export Citation
  • Kahle, L.E., Kelly, P.V., Eloit, K.A., & Weiss, E.P. (2013). Acute sodium bicarbonate loading has negligible effects on resting and exercise blood pressure but causes gastrointestinal distress. Nutrition Research, 33, 479486. PubMed ID: 23746564 doi:10.1016/j.nutres.2013.04.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnear, P.R., & Gray, L.T.D. (1995). SPSS for windows made simple. London, UK: Lawrence Erlbaum Associates.

  • Lancha Junior, A.H., Painelli, V.S., Saunders, B., & Artioli, G.G. (2015). Nutritional strategies to modulate intracellular and extracellular buffering capacity during high-intensity exercise. Sports Medicine, 45, S71S81. PubMed ID: 26553493 doi:10.1007/s40279-015-0397-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzorati, M., Possemiers, S., Verhelst, A., Cadé, A., Madit, N., & Van de Wiele, T. (2015). A novel Hypromellose capsule, with acid resistance properties, permits the targeted delivery of acid-sensitive products to the intestine. LWT–Food Science and Technology, 60, 544551. PubMed ID: 31467956

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matson, L.G., & Tran, Z.V. (1993). Effects of sodium bicarbonate ingestion on anaerobic performance: A meta-analytic review. International Journal of Sports Nutrition and Exercise Metabolism, 3, 228. doi:10.1123/ijsn.3.1.2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P., Robinson, A.L., Sparks, S.A., Bridge, C.A., Bentley, D.J., & McNaughton, L.R. (2016). The effects of novel ingestion of sodium bicarbonate on repeated sprint ability. The Journal of Strength and Conditioning Research, 30, 561568. PubMed ID: 26815179 doi:10.1519/JSC.0000000000001126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, S.M., Gehrig, S.M., Frese, S., Wagner, U.B., & Toigo, M. (2013). Multiday acute sodium bicarbonate intake improves endurance capacity and reduces acidosis in men. Journal of the International Society of Sports Nutrition, 10, 16. doi:10.1186/1550-2783-10-16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, L.F., Saunders, B., & Artioli, G.G. (2018). Is bypassing the stomach a means to optimize sodium bicarbonate supplementation? A case study with a postbariatric surgery individual. International Journal of Sport Nutrition and Exercise Metabolism, 26, 14.

    • Search Google Scholar
    • Export Citation
  • Price, M.J., & Simons, C. (2010). The effect of sodium bicarbonate ingestion on high-intensity intermittent running and subsequent performance. The Journal of Strength and Conditioning Research, 24, 18341842. PubMed ID: 20555273 doi:10.1519/JSC.0b013e3181e06e4a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reilly, T. (1990). Human circadian rhythms and exercise. Critical Reviews in Biomedical Engineering, 8, 165180.

  • Sale, C., Saunders, B., Hudson, S., Wise, J.A., Harris, R.C., & Sunderland, C.D. (2011). Effect of β-alanine plus sodium bicarbonate on high-intensity cycling capacity. Medicine & Science in Sports & Exercise, 43, 19721978. PubMed ID: 21407127

    • Search Google Scholar
    • Export Citation
  • Saunders, B., Sale, C., Harris, R.C., & Sunderland, C. (2014). Sodium bicarbonate and high-intensity-cycling capacity: Variability in responses. International Journal of Sports Physiology and Performance, 9, 627632. PubMed ID: 24155093 doi:10.1123/ijspp.2013-0295

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stannard, R.L., Stellingwerff, T., Artioli, G.G., Saunders, B., Cooper, S., & Sale, C. (2016). Dose-response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses. International Journal of Sport Nutrition and Exercise Metabolism, 26, 445453. doi:10.1123/ijsnem.2015-0286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turnberg, L.A., Fordtran, J.S., Carter, N.W., & Rector, F.C. (1970). Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. Journal of Clinical Investigation, 49, 548556. PubMed ID: 5415681 doi:10.1172/JCI106265

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3292 878 63
Full Text Views 126 29 1
PDF Downloads 128 38 3