Exogenous Ketone Salts Do Not Improve Cognitive Performance During a Dual-Stress Challenge

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

In the present study, our team aimed to investigate the effects of acute ingestion of a ketone salt (KS) supplement on the cognitive performance in healthy college-aged males during a dual-stress challenge (DSC). Following a peak oxygen uptake test and DSC familiarization, 16 males completed a DSC while cycling at 60% of their respective peak oxygen uptake after ingesting either a commercially available racemic (D- and L-)β-hydroxybutyrate (β-OHB) KS (0.38 g/kg body mass) or a placebo, using a triple-blinded, crossover, and counterbalanced design. The participants consumed the KS or placebo at −60 and −15 min prior to the start of the DSC. Heart rate, rating of perceived exertion, and blood β-OHB and glucose were sampled throughout. The DSC consisted of a mental arithmetic challenge and a modified Stroop Color Word, which alternated every 2 min for 20 min. Upon completion of the DSC, responses for correct, incorrect, and no responses were recorded for the mental arithmetic challenge and Stroop Color Word. Blood β-OHB was elevated with KS by −15 min and remained so throughout (p < .001), peaking at 0.76 ± 0.32 mM. Blood glucose was lower with KS compared with the placebo at −15 and 10 min by 9% and 5%, respectively (both ps < .05). There were no differences between the treatments for heart rate, rating of perceived exertion, mental arithmetic challenge, or Stroop Color Word. Overall, this study suggests that KSs are not effective aids for enhancing cognitive performance during a DSC, which might partially be explained by the inability of currently available commercial KS supplements to elevate β-OHB blood concentrations above ∼1.0 mM.

Waldman is with the Human Performance Lab, Department of Kinesiology, University of North Alabama, Florence, AL. Waldman and Shepherd are with the Applied Physiology Lab, Department of Kinesiology, Mississippi State University, Starkville, MS. Egan is with the School of Health & Human Performance, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland. McAllister is with the Metabolic & Applied Physiology Lab, Department of Health and Human Performance, Texas State University, San Marcos, TX.

Waldman (Hswaldman@una.edu) is corresponding author.
  • Acevedo, E., Webb, H., Weldy, M., Fabianke, E., Orndorff, G., & Starks, M. (2006). Cardiorespiratory responses of Hi Fit and Low Fit subjects to mental challenge during exercise. International Journal of Sports Medicine, 27(12), 1013–1022. PubMed ID: 16612743 doi:10.1055/s-2006-923902

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hilsdale, NJ: Lawrence Erlbaum Associates.

  • Cox, P.J., Kirk, T., Ashmore, T., Willerton, K., Evans, R., Smith, A., . . . McLure, S.W. (2016). Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metabolism, 24(2), 256–268. PubMed ID: 27475046 doi:10.1016/j.cmet.2016.07.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coyle, E.F., & Coggan, A.R. (1984). Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise. Sports Medicine, 1(6), 446–458. PubMed ID: 6390613 doi:10.2165/00007256-198401060-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egan, B., & D’Agostino, D.P. (2016). Fueling performance: Ketones enter the mix. Cell Metabolism, 24(3), 373–375. PubMed ID: 27626197 doi:10.1016/j.cmet.2016.08.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M., Cogan, K.E., & Egan, B. (2017). Metabolism of ketone bodies during exercise and training: Physiological basis for exogenous supplementation. The Journal of Physiology, 595(9), 2857–2871. doi:10.1113/JP273185

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M., & Egan, B. (2018). Intermittent running and cognitive performance after ketone ester ingestion. Medicine & Science in Sports & Exercise, 50(11), 2330–2338. PubMed ID: 29944604 doi:10.1249/MSS.0000000000001700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M., Patchett, E., Nally, R., Kearns, R., Larney, M., & Egan, B. (2018). Effect of acute ingestion of β-hydroxybutyrate salts on the response to graded exercise in trained cyclists. European Journal of Sport Science, 18(3), 376–386. PubMed ID: 29338584 doi:10.1080/17461391.2017.1421711

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, T., & Marquardt, T. (2018). Dietary supplements based on the ketone body β-hydroxybutyrate. Market analysis and evaluation of ingredients of supplements used in the USA. Ernährungs Umschau, 65(12), 204–212.

    • Search Google Scholar
    • Export Citation
  • Gerra, G., Zaimovic, A., Mascetti, G., Gardini, S., Zambelli, U., Timpano, M., . . . Brambilla, F. (2001). Neuroendocrine responses to experimentally-induced psychological stress in healthy humans. Psychoneuroendocrinology, 26(1), 91–107. PubMed ID: 11070337 doi:10.1016/S0306-4530(00)00046-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimont, M.-C., Desjobert, H., Fonfrède, M., Vitoux, D., Benoist, J.-F., Launay, J.-M., . . . Lefèvre, G. (2015). Multicentric evaluation of eight glucose and four ketone blood meters. Clinical Biochemistry, 48(18), 1310–1316. PubMed ID: 26232287 doi:10.1016/j.clinbiochem.2015.07.032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, M., Costill, D., Coggan, A., Fink, W., & Nishibata, I. (1984). Effect of carbohydrate feedings on muscle glycogen utilization and exercise performance. Medicine & Science in Sports & Exercise, 16(3), 219–222. PubMed ID: 6748917 doi:10.1249/00005768-198406000-00004

    • Search Google Scholar
    • Export Citation
  • Holdsworth, D.A., Cox, P.J., Kirk, T., Stradling, H., Impey, S.G., & Clarke, K. (2017). A ketone ester drink increases postexercise muscle glycogen synthesis in humans. Medicine & Science in Sports & Exercise, 49(9), 1789–1795. PubMed ID: 28398950 doi:10.1249/MSS.0000000000001292

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, W.G. (2004). How to interpret changes in an athletic performance test. Sports Medicine, 30, 1–7. doi:10.2165/00007256-200030010-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanarek, R.B., & Swinney, D. (1990). Effects of food snacks on cognitive performance in male college students. Appetite, 14(1), 15–27. PubMed ID: 2310175 doi:10.1016/0195-6663(90)90051-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leckey, J.J., Ross, M.L., Quod, M., Hawley, J.A., & Burke, L.M. (2017). Ketone diester ingestion impairs time-trial performance in professional cyclists. Frontiers in Physiology, 8, 806. PubMed ID: 29109686 doi:10.3389/fphys.2017.00806

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, H.M., Rogers, P.J., Hedderley, D.I., & Walker, A.F. (1996). Acute effects on mood and cognitive performance of breakfasts differing in fat and carbohydrate content. Appetite, 27(2), 151–164. PubMed ID: 8937619 doi:10.1006/appe.1996.0042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markus, C.R., Panhuysen, G., Jonkman, L.M., & Bachman, M. (1999). Carbohydrate intake improves cognitive performance of stress-prone individuals under controllable laboratory stress. British Journal of Nutrition, 82(6), 457–467. PubMed ID: 10690161 doi:10.1017/S0007114599001713

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAllister, M.J., Webb, H.E., Tidwell, D.K., Smith, J.W., Fountain, B.J., Schilling, M.W., & Williams, R.D., Jr. (2016). Exogenous carbohydrate reduces cortisol response from combined mental and physical stress. International Journal of Sports Medicine, 37(14), 1159–1165. PubMed ID: 27716864 doi:10.1055/s-0042-113467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMorris, T., Turner, T., Hale, B., & Sproule, J. (2016). Beyond the catecholamines hypothesis for an acute exercise-cognition interaction: A neurochemical perspective. In T. McMorris (Ed.), Exercise-cognition interaction: Neuroscience perspectives (Vol. 1, pp. 65–104). London, UK: Academic Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, A.J., Knight, N.S., Cole, M.A., Cochlin, L.E., Carter, E., Tchabanenko, K., . . . Schroeder, M.A. (2016). Novel ketone diet enhances physical and cognitive performance. The FASEB Journal, 30(12), 4021–4032. PubMed ID: 27528626 doi:10.1096/fj.201600773R

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordin, T.C., Done, A.J., & Traustadóttir, T. (2014). Acute exercise increases resistance to oxidative stress in young but not older adults. Age, 36(6), 9727. PubMed ID: 25380675 doi:10.1007/s11357-014-9727-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Malley, T., Myette-Cote, E., Durrer, C., & Little, J.P. (2017). Nutritional ketone salts increase fat oxidation but impair high-intensity exercise performance in healthy adult males. Applied Physiology, Nutrition, and Metabolism, 42(10), 1031–1035. doi:10.1139/apnm-2016-0641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owen, O., Morgan, A., Kemp, H., Sullivan, J., Herrera, M., & Cahill, G.J. (1967). Brain metabolism during fasting. The Journal of Clinical Investigation, 46(10), 1589–1595. PubMed ID: 6061736 doi:10.1172/JCI105650

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontifex, M.B., McGowan, A.L., Chandler, M.C., Gwizdala, K.L., Parks, A.C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40(1), 1–22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, W.D., & Ozand, P.T. (1980). Enzymes of L-(+)-3-hydroxybutyrate metabolism in the rat. Archives of Biochemistry and Biophysics, 205(1), 94–103. PubMed ID: 7447486 doi:10.1016/0003-9861(80)90087-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, R.J., Goss, F.L., Dube, J., Rutkowski, J., Dupain, M., Brennan, C., & Andreacci, J. (2004). Validation of the adult OMNI scale of perceived exertion for cycle ergometer exercise. Medicine & Science in Sports & Exercise, 36(1), 102–108. PubMed ID: 14707775 doi:10.1249/01.MSS.0000106169.35222.8B

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A.M., & Williamson, D.H. (1980). Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological Reviews, 60(1), 143–187. PubMed ID: 6986618 doi:10.1152/physrev.1980.60.1.143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodger, S., Plews, D., Laursen, P., & Driller, M.W. (2017). Oral β-hydroxybutyrate salt fails to improve 4-minute cycling performance following submaximal exercise. Journal of Science and Cycling, 6(1), 26–31.

    • Search Google Scholar
    • Export Citation
  • Stubbs, B.J., Cox, P.J., Evans, R.D., Santer, P., Miller, J.J., Faull, O.K., . . . Clarke, K. (2017). On the metabolism of exogenous ketones in humans. Frontiers in Physiology, 8, 848. PubMed ID: 29163194 doi:10.3389/fphys.2017.00848

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veech, R.L. (2004). The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins, Leukotrienes & Essential Fatty Acids, 70(3), 309–319. doi:10.1016/j.plefa.2003.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volek, J.S., Noakes, T., & Phinney, S.D. (2015). Rethinking fat as a fuel for endurance exercise. European Journal of Sport Science, 15(1), 13–20. PubMed ID: 25275931 doi:10.1080/17461391.2014.959564

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldman, H.S., Basham, S.A., Price, F.G., Smith, J.W., Chander, H., Knight, A.C., . . . McAllister, M.J. (2018). Exogenous ketone salts do not improve cognitive responses after a high-intensity exercise protocol in healthy college-aged males. Applied Physiology, Nutrition, and Metabolism, 43(7), 711–717. PubMed ID: 29451991 doi:10.1139/apnm-2017-0724

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, H.E., Garten, R.S., McMinn, D.R., Beckman, J.L., Kamimori, G.H., & Acevedo, E.O. (2011). Stress hormones and vascular function in firefighters during concurrent challenges. Biological Psychology, 87(1), 152–160. PubMed ID: 21382435 doi:10.1016/j.biopsycho.2011.02.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, R.J., & Edmond, J. (1977). Utilization of L(+)-3-hydroxybutrate, D (-)-3-hydroxybutrate, acetoacetate, and glucose for respiration and lipid synthesis in the 18-day-old rat. Journal of Biological Chemistry, 252(15), 5222–5226. PubMed ID: 885847

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1239 1239 671
Full Text Views 27 27 14
PDF Downloads 14 14 6