Effect of Drinking Rate on the Retention of Water or Milk Following Exercise-Induced Dehydration

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Liam Sayer Griffith University

Search for other papers by Liam Sayer in
Current site
Google Scholar
PubMed
Close
*
,
Nidia Rodriguez-Sanchez University of Stirling

Search for other papers by Nidia Rodriguez-Sanchez in
Current site
Google Scholar
PubMed
Close
*
,
Paola Rodriguez-Giustiniani University of Stirling

Search for other papers by Paola Rodriguez-Giustiniani in
Current site
Google Scholar
PubMed
Close
*
,
Christopher Irwin Griffith University

Search for other papers by Christopher Irwin in
Current site
Google Scholar
PubMed
Close
*
,
Danielle McCartney University of Sydney

Search for other papers by Danielle McCartney in
Current site
Google Scholar
PubMed
Close
*
,
Gregory R. Cox Bond University

Search for other papers by Gregory R. Cox in
Current site
Google Scholar
PubMed
Close
*
,
Stuart D.R. Galloway University of Stirling

Search for other papers by Stuart D.R. Galloway in
Current site
Google Scholar
PubMed
Close
*
, and
Ben Desbrow Griffith University

Search for other papers by Ben Desbrow in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study investigated the effect of drinking rate on fluid retention of milk and water following exercise-induced dehydration. In Part A, 12 male participants lost 1.9% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water or low-fat milk equal to the volume of sweat lost during exercise was provided. Beverages were ingested over 30 or 90 min, resulting in four beverage treatments: water 30 min, water 90 min, milk 30 min, and milk 90 min. In Part B, 12 participants (nine males and three females) lost 2.0% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water equal to the volume of sweat lost during exercise was provided. Water was ingested over 15 min (DR15), 45 min (DR45), or 90 min (DR90), with either DR15 or DR45 repeated. In both trials, nude body mass, urine volume, urine specific gravity and osmolality, plasma osmolality, and subjective ratings of gastrointestinal symptoms were obtained preexercise and every hour for 3 hr after the onset of drinking. In Part A, no effect of drinking rate was observed on the proportion of fluid retained, but milk retention was greater (p < .01) than water (water 30 min: 57% ± 16%, water 90 min: 60% ± 20%, milk 30 min: 83% ± 6%, and milk 90 min: 85% ± 7%). In Part B, fluid retention was greater in DR90 (57% ± 13%) than DR15 (50% ± 11%, p < .05), but this was within test–retest variation determined from the repeated trials (coefficient of variation: 17%). Within the range of drinking rates investigated the nutrient composition of a beverage has a more pronounced impact on fluid retention than the ingestion rate.

Sayer, Irwin, and Desbrow are with the School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia. Rodriguez-Sanchez, Rodriguez-Giustiniani, and Galloway are with the Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom. McCartney is with the Lambert Initiative for Cannabinoid Therapeutics, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia. Cox is with the Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia.

Sayer (liam.sayer@griffithuni.edu.au) is corresponding author.
  • Collapse
  • Expand
  • Baguley, B.J., Zilujko, J., Leveritt, M.D., Desbrow, B., & Irwin, C. (2016). The effect of ad libitum consumption of a milk-based liquid meal supplement vs. a traditional sports drink on fluid balance after exercise. International Journal of Sport Nutrition and Exercise Metabolism, 26(4), 347355. PubMed ID: 26693643 doi:10.1123/ijsnem.2015-0229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, L.B., & Jeukendrup, A.E. (2014). Optimal composition of fluid-replacement beverages. Comprehensive Physiology, 4(2), 575620. PubMed ID: 24715561 doi:10.1002/cphy.c130014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calbet, J., & MacLean, D. (1997). Role of caloric content on gastric emptying in humans. The Journal of Physiology, 498(2), 553559. doi:10.1113/jphysiol.1997.sp021881

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayton, D.J., Evans, G.H., & James, L.J. (2014). Effect of drink carbohydrate content on postexercise gastric emptying, rehydration, and the calculation of net fluid balance. International Journal of Sport Nutrition and Exercise Metabolism, 24(1), 7989. PubMed ID: 23980237 doi:10.1123/ijsnem.2013-0024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbrow, B., Jansen, S., Barrett, A., Leveritt, M.D., & Irwin, C. (2014). Comparing the rehydration potential of different milk-based drinks to a carbohydrate-electrolyte beverage. Applied Physiology, Nutrition, and Metabolism, 39(12), 13661372. PubMed ID: 25315686 doi:10.1139/apnm-2014-0174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, G.H., James, L.J., Shirreffs, S.M., & Maughan, R.J. (2017). Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. Journal of Applied Physiology, 122(4), 945951. PubMed ID: 28126906 doi:10.1152/japplphysiol.00745.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, G.H., Shirreffs, S.M., & Maughan, R.J. (2009). Postexercise rehydration in man: The effects of carbohydrate content and osmolality of drinks ingested ad libitum. Applied Physiology, Nutrition, and Metabolism, 34(4), 785793. PubMed ID: 19767815 doi:10.1139/H09-065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garth, A.K., & Burke, L.M. (2013). What do athletes drink during competitive sporting activities? Sports Medicine, 43(7), 539564. PubMed ID: 23529286 doi:10.1007/s40279-013-0028-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobson, R., & James, L. (2015). The addition of whey protein to a carbohydrate-electrolyte drink does not influence post-exercise rehydration. Journal of Sports Sciences, 33(1), 7784. PubMed ID: 25030530 doi:10.1080/02640414.2014.925570

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, L.J., Gingell, R., & Evans, G.H. (2012). Whey protein addition to a carbohydrate-electrolyte rehydration solution ingested after exercise in the heat. Journal of Athletic Training, 47(1), 6166. PubMed ID: 22488231 doi:10.4085/1062-6050-47.1.61

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, L.J., Mattin, L., Aldiss, P., Adebishi, R., & Hobson, R.M. (2014). Effect of whey protein isolate on rehydration after exercise. Amino Acids, 46(5), 12171224. PubMed ID: 24500112 doi:10.1007/s00726-014-1680-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, E.J., Graham, J., Newcomb, T., & Frischman, N. (2010). Effects of bolus vs. metered rehydration rates on fluid retention and hydration efficiency using 150% fluid replacement: 2290. Medicine & Science in Sports & Exercise, 42(5), 575. doi:10.1249/01.MSS.0000385427.89977.71

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovacs, E.M., Schmahl, R.M., Senden, J.M., & Brouns, F. (2002). Effect of high and low rates of fluid intake on post-exercise rehydration. International Journal of Sport Nutrition and Exercise Metabolism, 12(1), 1423. PubMed ID: 11993619 doi:10.1123/ijsnem.12.1.14

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaldi, A., Cesar, K., & Yano, Y. (1994). Effect of insulin on water and urea transport in the inner medullary collecting duct. American Journal of Physiology-Renal Physiology, 266(3), F394F399. doi:10.1152/ajprenal.1994.266.3.F394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh-Richard, D.M., Hatzis, E.S., Mathias, C.W., Venditti, N., & Dougherty, D.M. (2009). Adaptive Visual Analog Scales (AVAS): A modifiable software program for the creation, administration, and scoring of visual analog scales. Behavior Research Methods, 41(1), 99106. PubMed ID: 19182128 doi:10.3758/BRM.41.1.99

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J., Watson, P., Cordery, P.A., Walsh, N.P., Oliver, S.J., Dolci, A., . . . Galloway, S.D. (2016). A randomized trial to assess the potential of different beverages to affect hydration status: Development of a beverage hydration index. The American Journal of Clinical Nutrition, 103(3), 717723. PubMed ID: 26702122 doi:10.3945/ajcn.115.114769

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merson, S.J., Maughan, R.J., & Shirreffs, S.M. (2008). Rehydration with drinks differing in sodium concentration and recovery from moderate exercise-induced hypohydration in man. European Journal of Applied Physiology, 103(5), 585594. PubMed ID: 18463891 doi:10.1007/s00421-008-0748-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minehan, M.R., Riley, M.D., & Burke, L.M. (2002). Effect of flavor and awareness of kilojoule content of drinks on preference and fluid balance in team sports. International Journal of Sport Nutrition and Exercise Metabolism, 12(1), 8192. PubMed ID: 11993625 doi:10.1123/ijsnem.12.1.81

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J.B., Grandjean, P.W., Pizza, F.X., Starling, R.D., & Holtz, R.W. (1994). The effect of volume ingested on rehydration and gastric emptying following exercise-induced dehydration. Medicine & Science in Sports & Exercise, 26(9), 11351143. PubMed ID: 7808248 doi:10.1249/00005768-199409000-00011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, R., Bartoli, W., Stofan, J., Horn, M., & Eddy, D. (1999). A comparison of the gastric emptying characteristics of selected sports drinks. International Journal of Sport Nutrition, 9(3), 263274. PubMed ID: 10477362 doi:10.1123/ijsn.9.3.263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osterberg, K.L., Pallardy, S.E., Johnson, R.J., & Horswill, C.A. (2009). Carbohydrate exerts a mild influence on fluid retention following exercise-induced dehydration. Journal of Applied Physiology, 108(2), 245250. PubMed ID: 19940093 doi:10.1152/japplphysiol.91275.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passe, D., Horn, M., & Murray, R. (2000). Impact of beverage acceptability on fluid intake during exercise. Appetite, 35(3), 219229. PubMed ID: 11073704 doi:10.1006/appe.2000.0352

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, G.L. (1974). Vasopressin in osmotic regulation in man. Annual Review of Medicine, 25(1), 315322. doi:10.1146/annurev.me.25.020174.001531

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawka, M.N., Burke, L.M., Eichner, E.R., Maughan, R.J., Montain, S.J., & Stachenfeld, N.S. (2007). American College of Sports Medicine position stand. Exercise and fluid replacement. Medicine & Science in Sports & Exercise, 39(2), 377390. PubMed ID: 17277604 doi:10.1249/mss.0b013e31802ca597

    • Search Google Scholar
    • Export Citation
  • Seery, S., & Jakeman, P. (2016). A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate-electrolyte solution or water in healthy young men. British Journal of Nutrition, 116(6), 10131021. PubMed ID: 27477047 doi:10.1017/S0007114516002907

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirreffs, S.M., & Maughan, R.J. (1998). Volume repletion after exercise-induced volume depletion in humans: Replacement of water and sodium losses. American Journal of Physiology-Renal Physiology, 274(5), F868F875. doi:10.1152/ajprenal.1998.274.5.F868

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirreffs, S.M., Watson, P., & Maughan, R.J. (2007). Milk as an effective post-exercise rehydration drink. British Journal of Nutrition, 98(1), 173180. PubMed ID: 17459189 doi:10.1017/S0007114507695543

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommerfield, L.M., McAnulty, S.R., McBride, J.M., Zwetsloot, J.J., Austin, M.D., Mehlhorn, J.D., . . . Utter, A.C. (2016). Validity of urine specific gravity when compared to plasma osmolality as a measure of hydration status in male and female NCAA collegiate athletes. Journal of Strength and Conditioning Research, 30(8), 22192225. doi:10.1519/JSC.0000000000001313

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vist, G.E., & Maughan, R.J. (1995). The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. The Journal of Physiology, 486(2), 523531. doi:10.1113/jphysiol.1995.sp020831

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, P., Love, T.D., Maughan, R.J., & Shirreffs, S.M. (2008). A comparison of the effects of milk and a carbohydrate-electrolyte drink on the restoration of fluid balance and exercise capacity in a hot, humid environment. European Journal of Applied Physiology, 104(4), 633642. PubMed ID: 18618137 doi:10.1007/s00421-008-0809-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zimmerman, C.A., Huey, E.L., Ahn, J.S., Beutler, L.R., Tan, C.L., Kosar, S., . . . Knight, Z.A. (2019). A gut-to-brain signal of fluid osmolarity controls thirst satiation. Nature, 568(7750), 98102. PubMed ID: 30918408 doi:10.1038/s41586-019-1066-x

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5098 907 36
Full Text Views 152 18 0
PDF Downloads 114 20 0