Endurance-Type Exercise Increases Bulk and Individual Mitochondrial Protein Synthesis Rates in Rats

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Andrew M. HolwerdaMaastricht University

Search for other papers by Andrew M. Holwerda in
Current site
Google Scholar
PubMed
Close
*
,
Freek G. BouwmanMaastricht University

Search for other papers by Freek G. Bouwman in
Current site
Google Scholar
PubMed
Close
*
,
Miranda NabbenMaastricht University

Search for other papers by Miranda Nabben in
Current site
Google Scholar
PubMed
Close
*
,
Ping WangMaastricht University
Maastricht University Medical Centre+

Search for other papers by Ping Wang in
Current site
Google Scholar
PubMed
Close
*
,
Janneau van KranenburgMaastricht University

Search for other papers by Janneau van Kranenburg in
Current site
Google Scholar
PubMed
Close
*
,
Annemie P. GijsenMaastricht University

Search for other papers by Annemie P. Gijsen in
Current site
Google Scholar
PubMed
Close
*
,
Jatin G. BurnistonLiverpool John Moores University

Search for other papers by Jatin G. Burniston in
Current site
Google Scholar
PubMed
Close
*
,
Edwin C.M. MarimanMaastricht University

Search for other papers by Edwin C.M. Mariman in
Current site
Google Scholar
PubMed
Close
*
, and
Luc J.C. van LoonMaastricht University

Search for other papers by Luc J.C. van Loon in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Physical activity increases muscle protein synthesis rates. However, the impact of exercise on the coordinated up- and/or downregulation of individual protein synthesis rates in skeletal muscle tissue remains unclear. The authors assessed the impact of exercise on mixed muscle, myofibrillar, and mitochondrial protein synthesis rates as well as individual protein synthesis rates in vivo in rats. Adult Lewis rats either remained sedentary (n = 3) or had access to a running wheel (n = 3) for the last 2 weeks of a 3-week experimental period. Deuterated water was injected and subsequently administered in drinking water over the experimental period. Blood and soleus muscle were collected and used to assess bulk mixed muscle, myofibrillar, and mitochondrial protein synthesis rates using gas chromatography–mass spectrometry and individual muscle protein synthesis rates using liquid chromatography–mass spectrometry (i.e., dynamic proteomic profiling). Wheel running resulted in greater myofibrillar (3.94 ± 0.26 vs. 3.03 ± 0.15%/day; p < .01) and mitochondrial (4.64 ± 0.24 vs. 3.97 ± 0.26%/day; p < .05), but not mixed muscle (2.64 ± 0.96 vs. 2.38 ± 0.62%/day; p = .71) protein synthesis rates, when compared with the sedentary condition. Exercise impacted the synthesis rates of 80 proteins, with the difference from the sedentary condition ranging between −64% and +420%. Significantly greater synthesis rates were detected for F1-ATP synthase, ATP synthase subunit alpha, hemoglobin, myosin light chain-6, and synaptopodin-2 (p < .05). The skeletal muscle protein adaptive response to endurance-type exercise involves upregulation of mitochondrial protein synthesis rates, but it is highly coordinated as reflected by the up- and downregulation of various individual proteins across different bulk subcellular protein fractions.

Holwerda and Bouwman contributed equally to this work. Holwerda, Bouwman, Wang, van Kranenburg, Gijsen, Mariman, and van Loon are with the Department of Human Biology, NUTRIM, Maastricht University, Maastricht, The Netherlands. Nabben is with the Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands. Wang is also with the Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands. Burniston is with the Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.

van Loon (L.vanLoon@maastrichtuniversity.nl) is corresponding author.
  • Collapse
  • Expand
  • Balagopal, P., Ford, G.C., Ebenstein, D.B., Nadeau, D.A., & Nair, K.S. (1996). Mass spectrometric methods for determination of [13C]Leucine enrichment in human muscle protein. Analytical Biochemistry, 239(1), 7785. PubMed ID: 8660628 doi:10.1006/abio.1996.0293

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balagopal, P., Ljungqvist, O., & Nair, K.S. (1997a). Skeletal muscle myosin heavy-chain synthesis rate in healthy humans. American Journal of Physiology, 272(1, Pt. 1), E45E50.

    • Search Google Scholar
    • Export Citation
  • Balagopal, P., Nair, K.S., & Stirewalt, W.S. (1994). Isolation of myosin heavy chain from small skeletal muscle samples by preparative continuous elution gel electrophoresis: Application to measurement of synthesis rate in human and animal tissue. Analytical Biochemistry, 221(1), 7277. PubMed ID: 7985807 doi:10.1006/abio.1994.1381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balagopal, P., Rooyackers, O.E., Adey, D.B., Ades, P.A., & Nair, K.S. (1997b). Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. American Journal of Physiology, 273(4, Pt. 1), E790E800.

    • Search Google Scholar
    • Export Citation
  • Bowden-Davies, K., Connolly, J., Burghardt, P., Koch, L.G., Britton, S.L., & Burniston, J.G. (2015). Label-free profiling of white adipose tissue of rats exhibiting high or low levels of intrinsic exercise capacity. Proteomics, 15(13), 23422349. PubMed ID: 25758023 doi:10.1002/pmic.201400537

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burd, N.A., Holwerda, A.M., Selby, K.C., West, D.W., Staples, A.W., Cain, N.E., . . . Phillips, S.M. (2010a). Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. The Journal of Physiology, 588(Pt. 16), 31193130. doi:10.1113/jphysiol.2010.192856

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burd, N.A., Tardif, N., Rooyackers, O., & van Loon, L.J.C. (2015). Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism, 40(1), 19. PubMed ID: 25494678 doi:10.1139/apnm-2014-0211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burd, N.A., West, D.W., Staples, A.W., Atherton, P.J., Baker, J.M., Moore, D.R., . . . Phillips, S.M. (2010b). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One, 5(8), e12033. doi:10.1371/journal.pone.0012033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burniston, J.G., Connolly, J., Kainulainen, H., Britton, S.L., & Koch, L.G. (2014). Label-free profiling of skeletal muscle using high-definition mass spectrometry. Proteomics, 14(20), 23392344. PubMed ID: 25065561 doi:10.1002/pmic.201400118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burniston, J.G., & Hoffman, E.P. (2011). Proteomic responses of skeletal and cardiac muscle to exercise. Expert Review Proteomics, 8(3), 361377. doi:10.1586/epr.11.17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camera, D.M., Burniston, J.G., Pogson, M.A., Smiles, W.J., & Hawley, J.A. (2017). Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. The FASEB Journal, 31(12), 54785494. doi:10.1096/fj.201700531R

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchward-Venne, T.A., Pinckaers, P.J.M., Smeets, J.S.J., Peeters, W.M., Zorenc, A.H., Schierbeek, H., . . . van Loon, L.J.C. (2019). Myofibrillar and mitochondrial protein synthesis rates do not differ in young men following the ingestion of carbohydrate with whey, soy, or leucine-enriched soy protein after concurrent resistance- and endurance-type exercise. The Journal of Nutrition, 149(2), 210220. doi:10.1093/jn/nxy251

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasier, H.G., Fluckey, J.D., & Previs, S.F. (2010). The application of 2H2O to measure skeletal muscle protein synthesis. Nutrition & Metabolism, 7, 31. PubMed ID: 20409307 doi:10.1186/1743-7075-7-31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geiger, T., Velic, A., Macek, B., Lundberg, E., Kampf, C., Nagaraj, N., . . . Mann, M. (2013). Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Molecular & Cellular Proteomics, 12(6), 17091722. PubMed ID: 23436904 doi:10.1074/mcp.M112.024919

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez-Freire, M., Semba, R.D., Ubaida-Mohien, C., Fabbri, E., Scalzo, P., Højlund, K., . . . Ferrucci, L. (2017). The human skeletal muscle proteome project: A reappraisal of the current literature. Journal of Cachexia, Sarcopenia and Muscle, 8(1), 518. doi:10.1002/jcsm.12121

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasten, D.L., Morris, G.S., Ramanadham, S., & Yarasheski, K.E. (1998). Isolation of human skeletal muscle myosin heavy chain and actin for measurement of fractional synthesis rates. American Journal of Physiology, 275(6), E1092E1099. PubMed ID: 9843753.

    • Search Google Scholar
    • Export Citation
  • Hesketh, S., Srisawat, K., Sutherland, H., Jarvis, J., & Burniston, J. (2016). On the rate of synthesis of individual proteins within and between different striated muscles of the rat. Proteomes, 4(1), 12. doi:10.3390/proteomes4010012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloszy, J.O., Oscai, L.B., Don, I.J., & Molé, P.A. (1970). Mitochondrial citric acid cycle and related enzymes: Adaptive response to exercise. Biochemical and Biophysical Research Communications, 40(6), 13681373. PubMed ID: 4327015 doi:10.1016/0006-291X(70)90017-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holwerda, A.M., Kouw, I.W., Trommelen, J., Halson, S.L., Wodzig, W.K., Verdijk, L.B., & van Loon, L.J. (2016). Physical activity performed in the evening increases the overnight muscle protein synthetic response to presleep protein ingestion in older men. The Journal of Nutrition, 146(7), 13071314. doi:10.3945/jn.116.230086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holwerda, A.M., Overkamp, M., Paulussen, K.J.M., Smeets, J.S.J., van Kranenburg, J., Backx, E.M.P., . . . van Loon, L.J.C. (2018a). Protein supplementation after exercise and before sleep does not further augment muscle mass and strength gains during resistance exercise training in active older men. The Journal of Nutrition, 148(11), 17231732. doi:10.1093/jn/nxy169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holwerda, A.M., Paulussen, K.J.M., Overkamp, M., Smeets, J.S.J., Gijsen, A.P., Goessens, J.P.B., . . . van Loon, L.J.C. (2018b). Daily resistance-type exercise stimulates muscle protein synthesis in vivo in young men. Journal of Applied Physiology, 124(1), 6675. doi:10.1152/japplphysiol.00610.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaleel, A., Short, K.R., Asmann, Y.W., Klaus, K.A., Morse, D.M., Ford, G.C., & Nair, K.S. (2008). In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins. American Journal of Physiology—Endocrinology and Metabolism, 295(5), E1255E1268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasumov, T., Ilchenko, S., Li, L., Rachdaoui, N., Sadygov, R.G., Willard, B., . . . Previs, S. (2011). Measuring protein synthesis using metabolic ²H labeling, high-resolution mass spectrometry, and an algorithm. Analytical Biochemistry, 412(1), 4755. PubMed ID: 21256107 doi:10.1016/j.ab.2011.01.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzeff, H.L., Ojamaa, K.M., & Klein, I. (1995). The effects of long-term aerobic exercise and energy restriction on protein synthesis. Metabolism, 44(2), 188192. PubMed ID: 7869914 doi:10.1016/0026-0495(95)90263-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubica, N., Bolster, D.R., Farrell, P.A., Kimball, S.R., & Jefferson, L.S. (2005). Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. Journal of Biological Chemistry, 280(9), 75707580. doi:10.1074/jbc.M413732200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makatsori, A., Duncko, R., Schwendt, M., Moncek, F., Johansson, B.B., & Jezova, D. (2003). Voluntary wheel running modulates glutamate receptor subunit gene expression and stress hormone release in Lewis rats. Psychoneuroendocrinology, 28(5), 702714. PubMed ID: 12727136 doi:10.1016/S0306-4530(02)00062-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, B.F., Baehr, L.M., Musci, R.V., Reid, J.J., Peelor, F.F., Hamilton, K.L., & Bodine, S.C. (2019). Muscle-specific changes in protein synthesis with aging and reloading after disuse atrophy. Journal of Cachexia, Sarcopenia and Muscle, 10(6), 11951209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, D.R., Tang, J.E., Burd, N.A., Rerecich, T., Tarnopolsky, M.A., & Phillips, S.M. (2009). Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. Journal of Physiology, 587(Pt. 4), 897904. doi:10.1113/jphysiol.2008.164087

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosoni, L., Valluy, M.C., Serrurier, B., Prugnaud, J., Obled, C., Guezennec, C.Y., & Mirand, P.P. (1995). Altered response of protein synthesis to nutritional state and endurance training in old rats. American Journal of Physiology, 268(2, Pt. 1), E328E335. PubMed ID: 7864110

    • Search Google Scholar
    • Export Citation
  • Munoz, K.A., Aannestad, A., Tischler, M.E., & Henriksen, E.J. (1994). Skeletal muscle protein content and synthesis after voluntary running and subsequent unweighting. Metabolism, 43(8), 994999. PubMed ID: 8052157 doi:10.1016/0026-0495(94)90179-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, C.H., Shankaran, M., Churchward-Venne, T.A., Mitchell, C.J., Kolar, N.M., Burke, L.M., . . . Phillips, S.M. (2018). Effect of resistance training and protein intake pattern on myofibrillar protein synthesis and proteome kinetics in older men in energy restriction. Journal of Physiology, 596(11), 20912120. doi:10.1113/JP275246

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neese, R.A., Misell, L.M., Turner, S., Chu, A., Kim, J., Cesar, D., . . . Hellerstein, M.K. (2002). Measurement in vivo of proliferation rates of slow turnover cells by 2H2O labeling of the deoxyribose moiety of DNA. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 1534515350. PubMed ID: 12424339 doi:10.1073/pnas.232551499

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogasawara, R., Fujita, S., Hornberger, T.A., Kitaoka, Y., Makanae, Y., Nakazato, K., & Naokata, I. (2016). The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Scientific Reports, 6, 31142. doi:10.1038/srep31142

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogasawara, R., Sato, K., Matsutani, K., Nakazato, K., & Fujita, S. (2014). The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. American Journal of Physiology—Endocrinology and Metabolism, 306(10), E1155E1162. PubMed ID: 24691029 doi:10.1152/ajpendo.00647.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J.C., Khambatta, C.F., Li, K.W., Bruss, M.D., Shankaran, M., Dalidd, M., . . . Hellerstein, M.K. (2012). The effect of long term calorie restriction on in vivo hepatic proteostatis: A novel combination of dynamic and quantitative proteomics. Molecular & Cellular Proteomics, 11(12), 18011814. PubMed ID: 22984287 doi:10.1074/mcp.M112.021204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, Q., Bouwman, F.G., Baak, M.A.V., Renes, J., & Mariman, E.C.M. (2019). Glucose restriction plus refeeding in vitro induce changes of the human adipocyte secretome with an impact on complement factors and cathepsins. International Journal of Molecular Sciences, 20(16), 4055. doi:10.3390/ijms20164055

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, M.M., Turner, S.M., Hellerstein, M.K., Hamilton, K.L., & Miller, B.F. (2011). Long-term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation. The FASEB Journal, 25(9), 32403249. doi:10.1096/fj.11-186437

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rooyackers, O.E., Adey, D.B., Ades, P.A., & Nair, K.S. (1996). Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 93(26), 1536415369. PubMed ID: 8986817 doi:10.1073/pnas.93.26.15364

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shankaran, M., King, C.L., Angel, T.E., Holmes, W.E., Li, K.W., Colangelo, M., . . . Hellerstein, M.K. (2016a). Circulating protein synthesis rates reveal skeletal muscle proteome dynamics. Journal of Clinical Investigation, 126(1), 288302. doi:10.1172/JCI79639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shankaran, M., Shearer, T.W., Stimpson, S.A., Turner, S.M., King, C., Wong, P.-Y., . . . Evans, W.J. (2016b). Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats. American Journal of Physiology—Endocrinology and Metabolism, 310(6), E405E417. doi:10.1152/ajpendo.00257.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sollanek, K.J., Burniston, J.G., Kavazis, A.N., Morton, A.B., Wiggs, M.P., Ahn, B., . . . Powers, S.K. (2017). Global proteome changes in the rat diaphragm induced by endurance exercise training. PLoS One, 12(1), e0171007. PubMed ID: 28135290 doi:10.1371/journal.pone.0171007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, M.A.A., Wang, P., Bouwman, F.G., Hoebers, N., Blaak, E.E., Renes, J., . . . Goossens, G.H. (2019). A comparison between the abdominal and femoral adipose tissue proteome of overweight and obese women. Scientific Reports, 9(1), 4202. PubMed ID: 30862933 doi:10.1038/s41598-019-40992-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., Liem, D.A., Lau, E., Ng, D.C., Bleakley, B.J., Cadeiras, M., . . . Ping, P. (2014). Characterization of human plasma proteome dynamics using deuterium oxide. Proteomics Clinical Applications, 8(7–8), 610619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., Ding, Z., Solares, G.J., Choi, S.-M., Wang, B., Yoon, A., . . . Ivy, J.L. (2017). Co-ingestion of carbohydrate and whey protein increases fasted rates of muscle protein synthesis immediately after resistance exercise in rats. PLoS One, 12(3), e0173809. PubMed ID: 28296942 doi:10.1371/journal.pone.0173809

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werme, M., Thorén, P., Olson, L., & Brené, S. (1999). Addiction-prone Lewis but not Fischer rats develop compulsive running that coincides with downregulation of nerve growth factor inducible-B and neuron-derived orphan receptor 1. The Journal of Neuroscience, 19(14), 61696174. PubMed ID: 10407052 doi:10.1523/JNEUROSCI.19-14-06169.1999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, D.J., Franchi, M.V., Brook, M.S., Narici, M.V., Williams, J.P., Mitchell, W.K., . . . Smith, K. (2014). A validation of the application of D2O stable isotope tracer techniques for monitoring day-to-day changes in muscle protein subfraction synthesis in humans. American Journal of Physiology—Endocrinology and Metabolism, 306(5), E571E579. PubMed ID: 24381002 doi:10.1152/ajpendo.00650.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, S.B., Phillips, S.M., Atherton, P.J., Patel, R., Yarasheski, K.E., Tarnopolsky, M.A., & Rennie, M.J. (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. The Journal of Physiology, 586(15), 37013717. PubMed ID: 18556367 doi:10.1113/jphysiol.2008.153916

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, T.S., & Booth, F.W. (1990). Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise. Journal of Applied Physiology, 69(5), 17091717. doi:10.1152/jappl.1990.69.5.1709

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zangarelli, A., Chanseaume, E., Morio, B., Brugère, C., Mosoni, L., Rousset, P., . . . Walrand, S. (2006). Synergistic effects of caloric restriction with maintained protein intake on skeletal muscle performance in 21-month-old rats: A mitochondria-mediated pathway. The FASEB Journal, 20(14), 24392450. doi:10.1096/fj.05-4544com

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4864 932 112
Full Text Views 150 15 5
PDF Downloads 118 21 7