Development of an Anthropometric Prediction Model for Fat-Free Mass and Muscle Mass in Elite Athletes

Click name to view affiliation

Erik Sesbreno Canadian Sport Institute Ontario
l’Institut National du Sport du Québec
University of Stirling

Search for other papers by Erik Sesbreno in
Current site
Google Scholar
PubMed
Close
*
,
Gary Slater University of Sunshine Coast
Australian Institute of Sport

Search for other papers by Gary Slater in
Current site
Google Scholar
PubMed
Close
*
,
Margo Mountjoy Fédération Internationale de Natation (FINA)
University of Guelph

Search for other papers by Margo Mountjoy in
Current site
Google Scholar
PubMed
Close
*
, and
Stuart D.R. Galloway University of Stirling

Search for other papers by Stuart D.R. Galloway in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The monitoring of body composition is common in sports given the association with performance. Surface anthropometry is often preferred when monitoring changes for its convenience, practicality, and portability. However, anthropometry does not provide valid estimates of absolute lean tissue in elite athletes. The aim of this investigation was to develop anthropometric models for estimating fat-free mass (FFM) and skeletal muscle mass (SMM) using an accepted reference physique assessment technique. Sixty-four athletes across 18 sports underwent surface anthropometry and dual-energy X-ray absorptiometry (DXA) assessment. Anthropometric models for estimating FFM and SMM were developed using forward selection multiple linear regression analysis and contrasted against previously developed equations. Most anthropometric models under review performed poorly compared with DXA. However, models derived from athletic populations such as the Withers equation demonstrated a stronger correlation with DXA estimates of FFM (r = .98). Equations that incorporated skinfolds with limb girths were more effective at explaining the variance in DXA estimates of lean tissue (Sesbreno FFM [R2 = .94] and Lee SMM [R2 = .94] models). The Sesbreno equation could be useful for estimating absolute indices of lean tissue across a range of physiques if an accepted option like DXA is inaccessible. Future work should explore the validity of the Sesbreno model across a broader range of physiques common to athletic populations.

Sesbreno is with the Canadian Sport Institute Ontario, Toronto, ON, Canada; l’Institut National du Sport du Québec, Montreal, QC, Canada; and also with the Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom. Slater is with the School of Health and Sport Sciences, University of Sunshine Coast, Maroochydore, QLD, Australia; and also with the Australian Institute of Sport, Canberra, ACT, Australia. Mountjoy is with the Fédération Internationale de Natation (FINA), Lausanne, Switzerland; and also with the Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada. Galloway is with the Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom.

Galloway (s.d.r.galloway@stir.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • Armstrong, L.E., Pumerantz, A.C., Fiala, K.A., Roti, M.W., Kavouras, S.A., Casa, D.J., & Maresh, C.M. (2010). Human hydration indices: Acute and longitudinal reference values. International Journal of Sport Nutrition and Exercise Metabolism, 20(2), 145153. PubMed ID: 20479488 doi:10.1123/ijsnem.20.2.145

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, L. (1996). Somatotyping. In K. Norton & T. Olds (Eds.), Anthropometrica (pp. 147170). Sydney, Australia: University of New South Wales Press.

    • Search Google Scholar
    • Export Citation
  • Cisar, C.J., Housh, T.J., Johnson, G.O., Thorland, W.G., & Hughes, R.A. (1989). Validity of anthropometric equations for determination of changes in body composition in adult males during training. Journal of Sports Medicine and Physical Fitness, 29(2), 141148. PubMed ID: 2593652

    • Search Google Scholar
    • Export Citation
  • Claessens, A.L., Hlatky, S., Lefevre, J., & Holdhaus, H. (1994). The role of anthropometric characteristics in modern pentathlon performance in female athletes. Journal of Sports Sciences, 12(4), 391401. PubMed ID: 7932950 doi:10.1080/02640419408732186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claessens, A.L., Lefevre, J., Beunen, G., & Malina, R.M. (1999). The contribution of anthropometric characteristics to performance scores in elite female gymnasts. Journal of Sports Medicine and Physical Fitness, 39, 355360. PubMed ID: 10726438

    • Search Google Scholar
    • Export Citation
  • Cunningham, J.J. (1980). A reanalysis of the factors influencing basal metabolic rate in normal adults. American Journal of Clinical Nutrition, 33, 23722374. PubMed ID: 7435418 doi:10.1093/ajcn/33.11.2372

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniell, N., Olds, T., & Tomkinson, G. (2010). The importance of site location for girth measurements. Journal of Sports Sciences, 28(7), 751757. PubMed ID: 20419554 doi:10.1080/02640411003645703

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drinkwater, D.T., & Ross, W.D. (1980). Anthropometric fractionation of body mass. In M.D. Ostyn, & G. Beunen, J. Simons (Eds.), Kinanthropometry II (pp. 178189). Baltimore, MA: University Park Press.

    • Search Google Scholar
    • Export Citation
  • Forsyth, H., & Sinning, W. (1973). The anthropometric estimation of body density and lean body weight of male athletes. Medicine & Science in Sports, 5(3), 174180. PubMed ID: 4747639

    • Search Google Scholar
    • Export Citation
  • Hume, P., & Marfell-Jones, M. (2008). The importance of accurate site location for skinfold measurement. Journal of Sports Sciences, 26(12), 13331340. PubMed ID: 18821122 doi:10.1080/02640410802165707

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keogh, J.W.L., Hume, P.A., Pearson, S.N., & Mellow, P. (2007). Anthropometric dimensions of male powerlifters of varying body mass. Journal of Sports Sciences, 25(12), 13651376. PubMed ID: 17786689 doi:10.1080/02640410601059630

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., Wang, Z., Heymsfield, S.B., Baumgartner, R.N., & Gallagher, D. (2002). Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. The American Journal of Clinical Nutrition, 76(2), 378383. PubMed ID: 12145010 doi:10.1093/ajcn/76.2.378

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, R.C., Wang, Z., Heo, M., Ross, R., Janssen, I., & Heymsfield, S.B. (2000). Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. The American Journal of Clinical Nutrition, 72(3), 796803. PubMed ID: 10966902 doi:10.1093/ajcn/72.3.796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madsen, O.R., Egsmose, C., Lorentzen, J.S., Lauridsen, U.B., & Sùrensen, O.H. (1999). Influence of orthopaedic metal and high-density detection on body composition as assessed by dual-energy X-ray absorptiometry. Clinical Physiology, 19(3), 238245. PubMed ID: 10361614 doi:10.1046/j.1365-2281.1999.00168.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A.D., Spenst, L.F., Drinkwater, D.T., & Clarys, J.P. (1990). Anthropometric estimation of muscle mass in men. Medicine & Science in Sports & Exercise, 22(5), 729733. doi:10.1249/00005768-199010000-00027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, N.L., Sundgot-Borgen, J., Lohman, T.G., Ackland, T.R., Stewart, A.D., Maughan, R.J., Smith, S., & Müller, W. (2013). Body composition for health and performance: A survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on Body Composition, Health and Performance under the auspices of the IOC Medical Commission. British Journal of Sports Medicine, 47(16), 10441053. PubMed ID: 24065075 doi:10.1136/bjsports-2013-092561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nana, A., Slater, G.J., Stewart, A.D., & Burke, L.M. (2015). Methodology review: Using Dual-Energy X-Ray Absorptiometry (DXA) for the assessment of body composition in athletes and active people. International Journal of Sport Nutrition and Exercise Metabolism, 25(2), 198215. PubMed ID: 25029265 doi:10.1123/ijsnem.2013-0228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reilly, T., George, K., Marfell-Jones, M., Scott, M., Sutton, L., & Wallace, J. (2009). How well do skinfold equations predict percent body fat in elite soccer players? International Journal of Sports Medicine, 30(08), 607613. doi:10.1055/s-0029-1202353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez-Sanchez, N., & Galloway, S.D.R. (2015). Errors in dual energy X-ray absorptiometry estimation of body composition induced by hypohydration. International Journal of Sport Nutrition and Exercise Metabolism, 25(1), 6068. PubMed ID: 25029477 doi:10.1123/ijsnem.2014-0067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Munoz, C., Muros, J.J., & Zabala, M. (2017). World and Olympic mountain bike champions’ anthropometry, body composition and somatotype. Journal of Sports Medicine and Physical Fitness, 58(6), 843851. PubMed ID: 28462576

    • Search Google Scholar
    • Export Citation
  • Siders, W.A., Lukaski, H.C., & Bolonchuk, W.W. (1993). Relationships among swimming performance, body composition and somatotype in competitive collegiate swimmers. The Journal of Sports Medicine and Physical Fitness, 33(2), 166171. PubMed ID: 8412052

    • Search Google Scholar
    • Export Citation
  • Silva, A.M., Fields, D.A., Quiterio, A.L., & Sardinha, L.B. (2009). Are skinfold-based models accurate and suitable for assessing changes in body composition in highly trained athletes? Journal of Strength and Conditioning Research, 23(6), 16881696. PubMed ID: 19675495 doi:10.1519/JSC.0b013e3181b3f0e4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siri, W.E. (1956). The gross composition of the body. Advances in Biological and Medical Physics, 4, 239280. PubMed ID: 13354513 doi:10.1016/B978-1-4832-3110-5.50011-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, G.J., Rice, A.J., Mujika, I., Hahn, A.G., Sharpe, K., & Jenkins, D.G. (2005). Physique traits of lightweight rowers and their relationship to competitive success. British Journal of Sports Medicine, 39(10), 736741. PubMed ID: 16183770 doi:10.1136/bjsm.2004.015990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A., Marfell-Jones, M., Olds, T., & de Ridder, H. (2011). International standards for anthropometric assessment. Lower Hutt, New Zealand: International Society for the Advancement of Kinanthropometry, 1112.

    • Search Google Scholar
    • Export Citation
  • Thorland, W., Johnson, G., Tharp, G., Housh, T., & Cisar, C. (1984). Estimation of body density in adolescent athletes. Human Biology, 53(3), 439448.

    • Search Google Scholar
    • Export Citation
  • Thurlow, S., Oldroyd, B., & Hind, K. (2018). Effect of hand positioning on DXA total and regional bone and body composition parameters, precision error, and least significant change. Journal of Clinical Densitometry, 21(3), 375382. PubMed ID: 28462788 doi:10.1016/j.jocd.2017.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilmore, J.H., Girandola, R.N., & Moody, D.L. (1970). Validity of skinfold and girth assessment for predicting alterations in body composition. Journal of Applied Physiology, 29(3), 313317. PubMed ID: 5451307 doi:10.1152/jappl.1970.29.3.313

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Withers, R.T., Whittingham, N.O., Norton, K.I., Forgia, J.L., Ellis, M.W., & Crockett, A. (1987). Relative body fat and anthropometric prediction of body density of female athletes. European Journal of Applied Physiology, 56, 169180. doi:10.1007/BF00640641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemski, A.J., Keating, S.E., Broad, E.M., Marsh, D.J., Hind, K., & Slater, G.J. (2019). Preseason body composition adaptations in elite white and Polynesian rugby union athletes. International Journal of Sport Nutrition and Exercise Metabolism, 29, 917.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 7690 717 17
Full Text Views 266 29 3
PDF Downloads 182 13 0