The Effectiveness of Daily and Alternate Day Oral Iron Supplementation in Athletes With Suboptimal Iron Status (Part 2)

Click name to view affiliation

Rachel McCormick The University of Western Australia
The Western Australian Institute of Sport

Search for other papers by Rachel McCormick in
Current site
Google Scholar
PubMed
Close
*
,
Alex Dreyer Catalyst Dietitian

Search for other papers by Alex Dreyer in
Current site
Google Scholar
PubMed
Close
*
,
Brian Dawson The University of Western Australia

Search for other papers by Brian Dawson in
Current site
Google Scholar
PubMed
Close
*
,
Marc Sim The University of Western Australia
Edith Cowan University

Search for other papers by Marc Sim in
Current site
Google Scholar
PubMed
Close
*
,
Leanne Lester The University of Western Australia

Search for other papers by Leanne Lester in
Current site
Google Scholar
PubMed
Close
*
,
Carmel Goodman The Western Australian Institute of Sport

Search for other papers by Carmel Goodman in
Current site
Google Scholar
PubMed
Close
*
, and
Peter Peeling The University of Western Australia
The Western Australian Institute of Sport

Search for other papers by Peter Peeling in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The authors compared the effectiveness of daily (DAY) versus alternate day (ALT) oral iron supplementation in athletes with suboptimal iron. Endurance-trained runners (nine males and 22 females), with serum ferritin (sFer) concentrations <50 μg/L, supplemented with oral iron either DAY or ALT for 8 weeks. Serum ferritin was measured at baseline and at fortnightly intervals. Hemoglobin mass (Hbmass) was measured pre- and postintervention in a participant subset (n = 10). Linear mixed-effects models were used to assess the effectiveness of the two strategies on sFer and Hbmass. There were no sFer treatment (p = .928) or interaction (p = .877) effects; however, sFer did increase (19.7 μg/L; p < .001) over the 8-week intervention in both groups. In addition, sFer was 21.2 μg/L higher (p < .001) in males than females. No Hbmass treatment (p = .146) or interaction (p = .249) effects existed; however, a significant effect for sex indicated that Hbmass was 140.85 g higher (p = .004) in males compared with females. Training load (p = .001) and dietary iron intake (p = .015) also affected Hbmass. Finally, there were six complaints of severe gastrointestinal side effects in DAY, but only one in ALT. In summary, both supplement strategies increased sFer in athletes with suboptimal iron status; however, the ALT approach was associated with lower incidence of gastrointestinal upset.

McCormick, Dawson, Lester, and Peeling are with the School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia. McCormick, Goodman, and Peeling are with The Western Australian Institute of Sport, Mount Claremont, Western Australia, Australia. Dreyer is a Catalyst Dietitian, West Perth, Western Australia, Australia. Sim is with the School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; and the Medical School, Royal Perth Hospital Unit, The University of Western Australia, Perth, Western Australia, Australia.

McCormick (rmccormick@wais.org.au) is corresponding author.
  • Collapse
  • Expand
  • Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377381. PubMed ID: 7154893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, J.D. (2005). Diagnosis and managemegggnt of iron-deficiency anaemia. Best Practice & Research: Clinical Haematology, 18(2), 319332. PubMed ID: 15737893 doi:10.1016/j.beha.2004.08.022

    • Search Google Scholar
    • Export Citation
  • Craig, W.J. (1994). Iron status of vegetarians. The American Journal of Clinical Nutrition, 59(5), 1233S1237S. PubMed ID: 8172127 doi:10.1093/ajcn/59.5.1233S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, B., Goodman, C., Blee, T., Claydon, G., Peeling, P., Beilby, J., & Prince, A. (2006). Iron supplementation: Oral tablets versus intramuscular injections. International Journal of Sport Nutrition and Exercise Metabolism, 16(2), 180186. PubMed ID: 16779924 doi:10.1123/ijsnem.16.2.180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, C., Florhaug, J.A., Franklin, J., Gottschall, L., Hrovatin, L.A., Parker, S., … Dodge, C. (2001). A new approach to monitoring exercise training. The Journal of Strength and Conditioning Research, 15(1), 109115. PubMed ID: 11708692

    • Search Google Scholar
    • Export Citation
  • Frazer, D., Wilkins, S., Becker, E., Murphy, T., Vulpe, C., McKie, A., & Anderson, G.J. (2003). A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut, 52(3), 340346. PubMed ID: 12584213 doi:10.1136/gut.52.3.340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganz, T. (2005). Hepcidin—A regulator of iron absorption and iron recycling by macrophages. Best Practice & Research: Clinical Haematology, 18(2), 171182. doi:10.1016/j.beha.2004.08.020

    • Search Google Scholar
    • Export Citation
  • Garvican, L.A., Saunders, P.U., Cardoso, T., Macdougall, I.C., Lobigs, L.M., Fazakerley, R., … Gore, C.J. (2014). Intravenous iron supplementation in distance runners with low or suboptimal ferritin. Medicine & Science in Sports & Exercise, 46(2), 376385. PubMed ID: 23872938 doi:10.1249/MSS.0b013e3182a53594

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, R., Peeling, P., Nemeth, E., Bergland, D., McCluskey, W.T., & Stellingwerff, T. (2019). Single versus split dose of iron optimizes hemoglobin mass gains at 2106 m altitude. Medicine & Science in Sports & Exercise, 51(4), 751759. PubMed ID: 30882751 doi:10.1249/MSS.0000000000001847

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laftah, A.H., Ramesh, B., Simpson, R.J., Solanky, N., Bahram, S., Schümann, K., … Srai, S.K. (2004). Effect of hepcidin on intestinal iron absorption in mice. Blood, 103(10), 39403944. PubMed ID: 14751922 doi:10.1182/blood-2003-03-0953

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, R., Moretti, D., McKay, A.K.A., Laarakkers, C.M., vanSwelm, R., Trinder, D., & Peeling, P. (2019). The impact of morning versus afternoon exercise on iron absorption in athletes. Medicine & Science in Sports & Exercise, 51(10), 21472155. PubMed ID: 31058762 doi:10.1249/MSS.0000000000002026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K., Peeling, P., Pyne, D.B., Welvaert, M., Tee, N., Leckey, J.J., & Burke, L.M. (2019). Chronic adherence to a ketogenic diet modifies iron metabolism in elite athletes. Medicine & Science in Sports & Exercise, 51(3), 548555. PubMed ID: 30363006 doi:10.1249/MSS.0000000000001816

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moretti, D., Goede, J.S., Zeder, C., Jiskra, M., Chatzinakou, V., Tjalsma, H., … Zimmermann, M.B. (2015). Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood, 126(17), 19811989. PubMed ID: 26289639 doi:10.1182/blood-2015-05-642223

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Dawson, B., Goodman, C., Landers, G., & Trinder, D. (2008). Athletic induced iron deficiency: New insights into the role of inflammation, cytokines and hormones. European Journal of Applied Physiology, 103(4), 381391. PubMed ID: 18365240 doi:10.1007/s00421-008-0726-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Dawson, B., Goodman, C., Landers, G., Wiegerinck, E., Swinkels, D., & Trinder, D. (2009). Effects of exercise on hepcidin response and iron metabolism during recovery. International Journal of Sport Nutrition and Exercise Metabolism, 19(6), 583597. PubMed ID: 20175428 doi:10.1123/ijsnem.19.6.583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Sim, M., Badenhorst, C., Dawson, B., Govus, A.D., Abbiss, C.R., … Trinder, D. (2014). Iron status and the acute post-exercise hepcidin response in athletes. PLoS One, 9(3), e93002. PubMed ID: 24667393 doi:10.1371/journal.pone.0093002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pena-Rosas, J.P., De-Regil, L.M., Dowswell, T., & Viteri, F.E. (2012). Intermittent oral iron supplementation during pregnancy. Cochrane Database of Systematic Reviews, (7), CD009997. PubMed ID: 22786531 doi:10.1002/14651858.CD009997

    • Search Google Scholar
    • Export Citation
  • Schmidt, W., & Prommer, N. (2005). The optimised CO-rebreathing method: A new tool to determine total haemoglobin mass routinely. European Journal of Applied Physiology, 95(5–6), 486495. PubMed ID: 16222540 doi:10.1007/s00421-005-0050-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, Y.O., Pottgiesser, T., Ahlgrim, C., Ruthardt, S., Dickhuth, H., & Roecker, S. (2008). Haemoglobin mass in cyclists during stage racing. International Journal of Sports Medicine, 29(5), 372378. PubMed ID: 17614021 doi:10.1055/s-2007-965335

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, M., Garvican-Lewis, L.A., Cox, G.R., Govus, A., McKay, A.K., Stellingwerff, T., & Peeling, P. (2019). Iron considerations for the athlete: A narrative review. European Journal of Applied Physiology, 119(7), 14631478. PubMed ID: 31055680 doi:10.1007/s00421-019-04157-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoffel, N.U., Cercamondi, C.I., Brittenham, G., Zeder, C., Geurts-Moespot, A.J., Swinkels, D.W., … Zimmermann, M.B. (2017). Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: Two open-label, randomised controlled trials. Lancet Haematology, 4(11), e524e533. PubMed ID: 29032957 doi:10.1016/S2352-3026(17)30182-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolkien, Z., Stecher, L., Mander, A.P., Pereira, D.I.A., & Powell, J.J. (2015). Ferrous sulphate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS One, 10(2), e0117383. PubMed ID: 25700159 doi:10.1371/journal.pone.0117383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, A.J., Southon, S., & Fairweather-Tait, S.J. (1989). Measurement of non-haem iron absorption in non-anaemic rats using Fe: Can the Fe content of duodenal mucosal cells cause lumen or mucosal radioisotope dilution, or both, thus resulting in the underestimation of Fe absorption? British Journal of Nutrition, 62(3), 719727. PubMed ID: 2605161 doi:10.1079/bjn19890072

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5468 924 57
Full Text Views 281 60 6
PDF Downloads 312 58 5