Frequent Carbohydrate Ingestion Reduces Muscle Glycogen Depletion and Postpones Fatigue Relative to a Single Bolus

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The timing of carbohydrate ingestion and how this influences net muscle glycogen utilization and fatigue has only been investigated in prolonged cycling. Past findings may not translate to running because each exercise mode is distinct both in the metabolic response to carbohydrate ingestion and in the practicalities of carbohydrate ingestion. To this end, a randomized, cross-over design was employed to contrast ingestion of the same sucrose dose either at frequent intervals (15 × 5 g every 5 min) or at a late bolus (1 × 75 g after 75 min) during prolonged treadmill running to exhaustion in six well-trained runners (V˙O2max 61 ± 4 ml·kg−1·min−1). The muscle glycogen utilization rate was lower in every participant over the first 75 min of running (Δ 0.51 mmol·kg dm−1·min−1; 95% confidence interval [−0.02, 1.04] mmol·kg dm−1·min−1) and, subsequently, all were able to run for longer when carbohydrate had been ingested frequently from the start of exercise compared with when carbohydrate was ingested as a single bolus toward the end of exercise (105.6 ± 3.0 vs. 96.4 ± 5.0 min, respectively; Δ 9.3 min, 95% confidence interval [2.8, 15.8] min). A moderate positive correlation was apparent between the magnitude of glycogen sparing over the first 75 min and the improvement in running capacity (r = .58), with no significant difference in muscle glycogen concentrations at the point of exhaustion. This study indicates that failure to ingest carbohydrates from the outset of prolonged running increases reliance on limited endogenous muscle glycogen stores—the ergolytic effects of which cannot be rectified by subsequent carbohydrate ingestion late in exercise.

Menzies, Wood, Thomas, Hengist, Walhin, Gonzalez, and Betts are with the Department of Health, University of Bath, Bath, United Kingdom. Jones and Tsintzas are with the School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom.

Betts (j.betts@bath.ac.uk) is corresponding author.
  • Alghannam, A.F., Jedrzejewski, D., Tweddle, M., Gribble, H., Bilzon, J.L.J., & Betts, J.A. (2016). Reliability of time to exhaustion treadmill running as a measure of human endurance capacity. International Journal of Sports Medicine, 37(3), 219223. PubMed ID: 26669250

    • Search Google Scholar
    • Export Citation
  • Bergstrom, J. (1975). Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scandinavian Journal of Clinical & Laboratory Investigation, 35(7), 609616. PubMed ID: 1108172 doi:10.3109/00365517509095787

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergström, J., Hermansen, L., Hultman, E., & Saltin, B. (1967). Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica, 71(2), 140150. doi:10.1111/j.1748-1716.1967.tb03720.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, J.A., & Thompson, D. (2012). Thinking outside the bag (not necessarily outside the Lab). Medicine & Science in Sports & Exercise, 44(10), 2040. PubMed ID: 22986475 doi:10.1249/MSS.0b013e318264526f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, J.A., Williams, C., Boobis, L., & Tsintzas, K. (2008). Increased carbohydrate oxidation after ingesting carbohydrate with added protein. Medicine & Science in Sports & Exercise, 40(5), 903912. PubMed ID: 18408607 doi:10.1249/MSS.0b013e318164cb52

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, E.R., & Allen, D.G. (1997). Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. The Journal of Physiology, 498(Pt. 1), 1729. doi:10.1113/jphysiol.1997.sp021838

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrzanowski-Smith, O.J., Edinburgh, R.M., Betts, J.A., Stokes, K.A., & Gonzalez, J.T. (2018). Evaluation of a graded exercise test to determine peak fat oxidation in individuals with low cardiorespiratory fitness. Applied Physiology, Nutrition, and Metabolism, 43(12), 12881297. PubMed ID: 29852078 doi:10.1139/apnm-2018-0098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claassen, A., Lambert, E.V., Bosch, A.N., Rodger, l.M., St. Clair Gibson, A., & Noakes, T.D. (2005). Variability in exercise capacity and metabolic response during endurance exercise after a low carbohydrate diet. International Journal of Sport Nutrition and Exercise Metabolism, 15(2), 97116. PubMed ID: 16089270 doi:10.1123/ijsnem.15.2.97

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coggan, A.R., & Coyle, E.F. (1987). Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. Journal of Applied Physiology, 63(6), 23882395. PubMed ID: 3325488 doi:10.1152/jappl.1987.63.6.2388

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coggan, A.R., & Coyle, E.F. (1989). Metabolism and performance following carbohydrate ingestion late in exercise. Medicine & Science in Sports & Exercise, 21(1), 5965. PubMed ID: 2927302 doi:10.1249/00005768-198902000-00011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coggan, A.R., & Coyle, E.F. (1991). Carbohydrate ingestion during prolonged exercise: Effects on metabolism and performance. Exercise and Sport Sciences Reviews, 19, 140. PubMed ID: 1936083 doi:10.1249/00003677-199101000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences. New York, NY: Routledge Academic.

  • Costill, D.L., Jansson, E., Gollnick, P.D., & Saltin, B. (1974). Glycogen utilization in leg muscles of men during level and uphill running. Acta Physiologica Scandinavica, 91(4), 475481. PubMed ID: 4432759 doi:10.1111/j.1748-1716.1974.tb05703.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coyle, E.F. (2004). Fluid and fuel intake during exercise. Journal of Sports Sciences, 22(1), 3955. PubMed ID: 14971432 doi:10.1080/0264041031000140545

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coyle, E.F., Coggan, A.R., Hemmert, M.K., & Ivy, J.L. (1986). Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. Journal of Applied Physiology, 61(1), 165172. PubMed ID: 3525502 doi:10.1152/jappl.1986.61.1.165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coyle, E.F., Hamilton, M.T., Alonso, J.G., Montain, S.J., & Ivy, J.L. (1991). Carbohydrate metabolism during intense exercise when hyperglycemic. Journal of Applied Physiology, 70(2), 834840. PubMed ID: 2022575 doi:10.1152/jappl.1991.70.2.834

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fielding, R.A., Costill, D.L., Fink, W.J., King, D.S., Hargreaves, M., & Kovaleski, J.E. (1985). Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Medicine & Science in Sports & Exercise, 17(4), 472476. PubMed ID: 4033404 doi:10.1249/00005768-198508000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, J.T., Fuchs, C.J., Smith, F.E., Thelwall, P.E., Taylor, R., Stevenson, E.J., … van Loon, L.J.C. (2015). Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. American Journal of Physiology—Endocrinology and Metabolism, 309(12), E1032E1039. PubMed ID: 26487008 doi:10.1152/ajpendo.00376.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, R.C., Hultman, E., & Nordesjö, L.O. (1974). Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scandinavian Journal of Clinical & Laboratory Investigation, 33(2), 109120. PubMed ID: 4852173 doi:10.3109/00365517409082477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawley, J.A., & Leckey, J.J. (2015). Carbohydrate dependence during prolonged, intense endurance exercise. Sports Medicine, 45(Suppl. 1), S5S12. doi:10.1007/s40279-015-0400-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heesch, M.W.S., Mieras, M.E., & Slivka, D.R. (2014). The performance effect of early versus late carbohydrate feedings during prolonged exercise. Applied Physiology, Nutrition, and Metabolism, 39(1), 5863. PubMed ID: 24383508 doi:10.1139/apnm-2013-0034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, M.D., & Fogard, K. (2011). Factors related to successful completion of a 161-km ultramarathon. International Journal of Sports Physiology and Performance, 6(1), 2537. PubMed ID: 21487147 doi:10.1123/ijspp.6.1.25

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E. (2014). A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Medicine, 44(Suppl. 1), S25S33. doi:10.1007/s40279-014-0148-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., & Jentjens, R. (2000). Oxidation of carbohydrate feedings during prolonged exercise: Current thoughts, guidelines and directions for future research. Sports Medicine, 29(6), 407424. doi:10.2165/00007256-200029060-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., & Wallis, G.A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26(Suppl. 1), S28S37. doi:10.1055/s-2004-830512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, M.E.J., & Loftus, G.R. (2003). Using confidence intervals for graphically based data interpretation. Canadian Journal of Experimental Psychology, 57, 203220. PubMed ID: 14596478 doi:10.1037/h0087426

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McConell, G., Kloot, K., & Hargreaves, M. (1996). Effect of timing of carbohydrate ingestion on endurance exercise performance. Medicine & Science in Sports & Exercise, 28(10), 13001304. PubMed ID: 8897388 doi:10.1097/00005768-199610000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ørtenblad, N., & Nielsen, J. (2015). Muscle glycogen and cell function: Location, location, location. Scandinavian Journal of Medicine & Science in Sports, 25(Suppl. 4), 3440. doi:10.1111/sms.12599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ørtenblad, N., Nielsen, J., Saltin, B., & Holmberg, H. (2011). Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. The Journal of Physiology, 589(Pt. 3), 711725. PubMed ID: 21135051 doi:10.1113/jphysiol.2010.195982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H.P., Wiersma, J.W., Koerselman, J., Akkermans, L.M., Bol, E., Mosterd, W.L., & de Vries, W.R. (2000). The effect of a sports drink on gastroesophageal reflux during a run-bike-run test. International Journal of Sports Medicine, 21(1), 6570. PubMed ID: 10683102 doi:10.1055/s-2000-8858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudzki, S.J., Hazard, H., & Collinson, D. (1995). Gastrointestinal blood loss in triathletes: It’s etiology and relationship to sports anaemia. Australian Journal of Science and Medicine in Sport, 27(1), 38. PubMed ID: 7780774

    • Search Google Scholar
    • Export Citation
  • Schweitzer, G.G., Smith, J.D., & Lecheminant, J.D. (2009). Timing carbohydrate beverage intake during prolonged moderate intensity exercise does not affect cycling performance. International Journal of Exercise Science, 2(1), 418. PubMed ID: 27182308

    • Search Google Scholar
    • Export Citation
  • Stellingwerff, T., & Cox, G.R. (2014). Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Applied Physiology, Nutrition, and Metabolism, 39(9), 9981011. PubMed ID: 24951297 doi:10.1139/apnm-2014-0027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocks, B., Betts, J.A., & McGawley, K. (2016). Effects of carbohydrate dose and frequency on metabolism, gastrointestinal discomfort, and cross-country skiing performance. Scandinavian Journal of Medicine & Science in Sports, 26(9), 11001108. PubMed ID: 26316418 doi:10.1111/sms.12544

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, H.L., Buskirk, E., & Henschel, A. (1955). Maximal oxygen intake as an objective measure of cardio-respiratory performance. Journal of Applied Physiology, 8(1), 7380. PubMed ID: 13242493 doi:10.1152/jappl.1955.8.1.73

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsintzas, K., Williams, C., Boobis, L., & Greenhaff, P. (1995). Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. The Journal of Physiology, 489(Pt. 1), 243250. doi:10.1113/jphysiol.1995.sp021046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsintzas, K., Williams, C., Boobis, L., & Greenhaff, P. (1996a). Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. Journal of Applied Physiology, 81(2), 801809. doi:10.1152/jappl.1996.81.2.801

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsintzas, K., Williams, C., Constantin-Teodosiu, D., Hultman, E., Boobis, L., Clarys, P., & Greenhaff, P. (2001). Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man: Effect of carbohydrate ingestion. The Journal of Physiology, 537(Pt. 1), 305311. PubMed ID: 11711582 doi:10.1111/j.1469-7793.2001.0305k.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsintzas, K., Williams, C., Wilson, W., & Burrin, J. (1996b). Influence of carbohydrate supplementation early in exercise on endurance running capacity. Medicine & Science in Sports & Exercise, 28(11), 13731379. doi:10.1097/00005768-199611000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Thienen, R., D’Hulst, G., Deldicque, L., & Hespel, P. (2014). Biochemical artifacts in experiments involving repeated biopsies in the same muscle. Physiological Reports, 2(5), e00286. PubMed ID: 24819751 doi:10.14814/phy2.286

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 764 764 156
Full Text Views 54 54 8
PDF Downloads 47 47 7