Case Study: Resumption of Eumenorrhea in Parallel With High Training Load After 4 Years of Menstrual Dysfunction: A 5-Year Follow-Up of an Elite Female Cyclist

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The female athlete triad is a condition where low energy availability is typically observed together with menstrual dysfunction and/or low bone mineral density. How this condition affects maximal work capacity in endurance athletes is not clear, and the recovery time course of menses with increased energy availability with concomitant high training load is unknown. This case study of an amenorrheic elite road cyclist reports resumption of normal menstrual function after weight gain during a 5-year period (2014–2019), while engaged in high training load and competition. The athlete (V˙O2max 3.54 L/min, 64 ml·min−1·kg−1, aerobic peak power output 300 W, 5.4 W/kg) reported amenorrhea (2013–2015) and oligomenorrhea (2015–2018). Training load increased from 2014 to 2019 (584–818 hr/year and 26,707–41,945 training stress score/year). Regular menses (every 23–35 days) resumed in June 2018, ∼5–6 months after a weight gain episode. During the period of menstrual dysfunction, body mass was 51.3 ± 2.25 kg (mean ± 95% confidence limit) and fat percentage was 19% (dual-energy X-ray absorptiometry, 2016), and after weight gain, body mass was 56.8 ± 2.63 kg and fat percentage was 25% (dual-energy X-ray absorptiometry, 2019). Crank-based power meter data showed absolute mean maximal power (in watts) improvement over the 5 s to 4 hr range through the 2014–2019 period, while relative mean maximal power (in watts per kilogram) likely peaked in the 2015–2016 season for 5 min, 20 min, and 30 min, but remained mostly unchanged across seasons. Results suggest that (a) the best relative power output associated with aerobic capacity (5 min to 1 hr) can be achieved during menstrual dysfunction, (b) high performance achieved despite an increase in body mass, and (c) resumption of menses is achievable while maintaining high training loads when coupled with high energy availability.

The author is with the Research Institute for Sport and Exercise Sciences, School for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.

Areta (j.l.areta@ljmu.ac.uk) is corresponding author.
  • Allen, H., & Coggan, A. (2010). Training and racing with a power meter (2nd ed.). Boulder, CO: VeloPress.

  • Areta, J.L., Burke, L.M., Ross, M.L., Camera, D.M., West, D.W.D., Broad, E.M., . . . Coffey, V.G. (2013). Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. The Journal of Physiology, 591(9), 23192331. PubMed ID: 23459753 doi:10.1113/jphysiol.2012.244897

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Souza, M.J., Koltun, K.J., Strock, N.C., & Williams, N.I. (2019). Rethinking the concept of an energy availability threshold and its role in the female athlete triad. Current Opinion in Physiology, 10, 3542. doi:10.1016/j.cophys.2019.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Souza, M.J., Toombs, R.J., Scheid, J.L., O’Donnell, E., West, S.L., & Williams, N.I. (2010). High prevalence of subtle and severe menstrual disturbances in exercising women: Confirmation using daily hormone measures. Human Reproduction, 25(2), 491503. PubMed ID: 19945961 doi:10.1093/humrep/dep411

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Souza, M.J., Williams, N.I., Nattiv, A., Joy, E., Misra, M., Loucks, A.B., . . . McComb, J. (2014). Misunderstanding the female athlete triad: Refuting the IOC consensus statement on Relative Energy Deficiency in Sport (RED-S). British Journal of Sports Medicine, 48(20), 14611465. PubMed ID: 25037200 doi:10.1136/bjsports-2014-093958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, K.D. (2014). Estimating human energy intake using mathematical models. The American Journal of Clinical Nutrition, 100(3), 744745. PubMed ID: 25080459 doi:10.3945/ajcn.114.094441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawley, J.A., & Noakes, T.D. (1992). Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. European Journal of Applied Physiology and Occupational Physiology, 65(1), 7983. PubMed ID: 1505544 doi:10.1007/BF01466278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, W.G. (2017). A spreadsheet for monitoring an individual’s changes and trend. Sportscience, 21, 59. Retrieved from http://sportsci.org/2017/wghtrend.htm

    • Search Google Scholar
    • Export Citation
  • Impey, S.G., Hearris, M.A., Hammond, K.M., Bartlett, J.D., Louis, J., Close, G.L., & Morton, J.P. (2018). Fuel for the work required: A theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Medicine, 48(5), 10311048. PubMed ID: 29453741 doi:10.1007/s40279-018-0867-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Łagowska, K., Kapczuk, K., & Jeszka, J. (2014). Nine-month nutritional intervention improves restoration of menses in young female athletes and ballet dancers. Journal of the International Society of Sports Nutrition, 11(1), 52. PubMed ID: 25389380 doi:10.1186/s12970-014-0052-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lieberman, J.L., De Souza, M.J., Wagstaff, D.A., & Williams, N.I. (2018). Menstrual disruption with exercise is not linked to an energy availability threshold. Medicine & Science in Sports & Exercise, 50(3), 551561. PubMed ID: 29023359 doi:10.1249/MSS.0000000000001451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., Kiens, B., & Wright, H.H. (2011). Energy availability in athletes. Journal of Sports Sciences, 29(Suppl. 1), S7S15. doi:10.1080/02640414.2011.588958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., & Thuma, J.R. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. The Journal of Clinical Endocrinology & Metabolism, 88(1), 297311. PubMed ID: 12519869 doi:10.1210/jc.2002-020369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., & Verdun, M. (1998). Slow restoration of LH pulsatility by refeeding in energetically disrupted women. The American Journal of Physiology, 275(4, Pt. 2), R1218R1226.

    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., Verdun, M., & Heath, E.M. (With the Technical Assistance of T. Law, Sr. and J.R. Thuma). (1998). Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. Journal of Applied Physiology, 84(1), 3746. PubMed ID: 9451615 doi:10.1152/jappl.1998.84.1.37

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallinson, R.J., Williams, N.I., Olmsted, M.P., Scheid, J.L., Riddle, E.S., & De Souza, M. (2013). A case report of recovery of menstrual function following a nutritional intervention in two exercising women with amenorrhea of varying duration. Journal of the International Society of Sports Nutrition, 10(1), 34. doi:10.1186/1550-2783-10-34

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, D.T., McLean, B., Trewin, C., Lee, H., Victor, J., & Hahn, A.G. (2001). Physiological characteristics of nationally competitive female road cyclists and demands of competition. Sports Medicine, 31(7), 469477. PubMed ID: 11428684 doi:10.2165/00007256-200131070-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melin, A., Tornberg, Å.B., Skouby, S., Faber, J., Ritz, C., Sjödin, A., & Sundgot-Borgen, J. (2014). The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. British Journal of Sports Medicine, 48(7), 540545. PubMed ID: 24563388 doi:10.1136/bjsports-2013-093240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melin, A., Tornberg, Å.B., Skouby, S., Møller, S.S., Faber, J., Sundgot-Borgen, J., & Sjödin, A. (2016). Low-energy density and high fiber intake are dietary concerns in female endurance athletes: Energy availability and dietary intake. Scandinavian Journal of Medicine & Science in Sports, 26(9), 10601071. PubMed ID: 26148242 doi:10.1111/sms.12516

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, D.R., Camera, D.M., Areta, J.L., & Hawley, J.A. (2014). Beyond muscle hypertrophy: Why dietary protein is important for endurance athletes. Applied Physiology, Nutrition, and Metabolism, 39(9), 987997. PubMed ID: 24806440 doi:10.1139/apnm-2013-0591

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountjoy, M., Sundgot-Borgen, J., Burke, L., Ackerman, K.E., Blauwet, C., Constantini, N., . . . Budgett, R. (2018). International Olympic Committee (IOC) consensus statement on Relative Energy Deficiency in Sport (RED-S): 2018 update. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 316331. PubMed ID: 29771168 doi:10.1123/ijsnem.2018-0136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nana, A. (2013). Reliability of dual-energy X-ray absorptiometry in assessing body composition in elite athletes (Thesis). RMIT University, Melbourne, VIC.  Retrieved from https://researchbank.rmit.edu.au/eserv/rmit:160430/Nana.pdf

    • Search Google Scholar
    • Export Citation
  • Nattiv, A., Loucks, A.B., Manore, M.M., Sanborn, C.F., Sundgot-Borgen, J., Warren, M.P., and American College of Sports Medicine. (2007). American College of Sports Medicine position stand. The female athlete triad. Medicine & Science in Sports & Exercise, 39(10), 18671882. PubMed ID: 17909417 doi:10.1249/mss.0b013e318149f111

    • Search Google Scholar
    • Export Citation
  • Sherk, V.D., Barry, D.W., Villalon, K.L., Hansen, K.C., Wolfe, P., & Kohrt, W.M. (2014). Bone loss over 1 year of training and competition in female cyclists. Clinical Journal of Sport Medicine, 24(4), 331336. PubMed ID: 24326929 doi:10.1097/JSM.0000000000000050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solli, G.S., Tønnessen, E., & Sandbakk, Ø. (2017). The training characteristics of the world’s most successful female cross-country skier. Frontiers in Physiology, 8, 1069. PubMed ID: 29326603 doi:10.3389/fphys.2017.01069

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stellingwerff, T. (2018). Case study: Body composition periodization in an olympic-level female middle-distance runner over a 9-year career. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 428433. PubMed ID: 29140157 doi:10.1123/ijsnem.2017-0312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stickler, L.G., Hoogenboom, B.J., & Brown, J. (2019). The impact of nutritional intervention on menstrual dysfunction in female athletes: A systematic review. SN Comprehensive Clinical Medicine, 1(9), 669676. doi:10.1007/s42399-019-00107-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torstveit, M.K., & Sundgot-Borgen, J. (2005). Participation in leanness sports but not training volume is associated with menstrual dysfunction: A national survey of 1276 elite athletes and controls. British Journal of Sports Medicine, 39(3), 141147. PubMed ID: 15728691 doi:10.1136/bjsm.2003.011338

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 433 433 189
Full Text Views 31 31 9
PDF Downloads 26 26 6