Metabolic Rate in Adolescent Athletes: The Development and Validation of New Equations, and Comparison to Previous Models

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Gatorade Sports Science Institute, PepsiCo, Inc.
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

We sought to assess the accuracy of current or developing new prediction equations for resting metabolic rate (RMR) in adolescent athletes. RMR was assessed via indirect calorimetry, alongside known predictors (body composition via dual-energy X-ray absorptiometry, height, age, and sex) and hypothesized predictors (race and maturation status assessed via years to peak height velocity), in a diverse cohort of adolescent athletes (n = 126, 77% male, body mass = 72.8 ± 16.6 kg, height = 176.2 ± 10.5 cm, age = 16.5 ± 1.4 years). Predictive equations were produced and cross-validated using repeated k-fold cross-validation by stepwise multiple linear regression (10 folds, 100 repeats). Performance of the developed equations was compared with several published equations. Seven of the eight published equations examined performed poorly, underestimating RMR in >75% to >90% of cases. Root mean square error of the six equations ranged from 176 to 373, mean absolute error ranged from 115 to 373 kcal, and mean absolute error SD ranged from 103 to 185 kcal. Only the Schofield equation performed reasonably well, underestimating RMR in 51% of cases. A one- and two-compartment model were developed, both r2 of .83, root mean square error of 147, and mean absolute error of 114 ± 26 and 117 ± 25 kcal for the one- and two-compartment model, respectively. Based on the models’ performance, as well as visual inspection of residual plots, the following model predicts RMR in adolescent athletes with better precision than previous models; RMR = 11.1 × body mass (kg) + 8.4 × height (cm) − (340 male or 537 female).

The authors are with Gatorade Sports Science Institute, PepsiCo, Inc., Bradenton, FL, USA.

Reale (Reid.reale@gmail.com) is corresponding author.
  • Cunningham, J.J. (1980). A reanalysis of the factors influencing basal metabolic rate in normal adults. American Journal of Clinical Nutrition, 33(11), 23722374. PubMed ID: 7435418 doi:10.1093/ajcn/33.11.2372

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, J.J. (1991). Body composition as a determinant of energy expenditure: A synthetic review and a proposed general prediction equation. American Journal of Clinical Nutrition, 54(6), 963969. PubMed ID: 1957828 doi:10.1093/ajcn/54.6.963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lorenzo, A., Bertini, I., Candeloro, N., Piccinelli, R., Innocente, I., & Brancati, A. (1999). A new predictive equation to calculate resting metabolic rate in athletes. Journal of Sports Medicine and Physical Fitness, 39(3), 213219. PubMed ID: 10573663

    • Search Google Scholar
    • Export Citation
  • Food and Agriculture Organization. (2004). Human energy requirements: Report of a joint FAO/WHO/UNU expert consultation. Rome, Italy: World Health Organization, October 17–24, 2001.

    • Search Google Scholar
    • Export Citation
  • Fullmer, S., Benson-Davies, S., Earthman, C.P., Frankenfield, D.C., Gradwell, E., Lee, P.S., … Trabulsi, J. (2015). Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals. Journal of the Academy of Nutrition and Dietetics, 115(9), 14171446.e2. PubMed ID: 26038298 doi:10.1016/j.jand.2015.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granados, A., Gebremariam, A., & Lee, J.M. (2015). Relationship between timing of peak height velocity and pubertal staging in boys and girls. Journal of Clinical Research in Pediatric Endocrinology, 7(3), 235237. PubMed ID: 26831559 doi:10.4274/jcrpe.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, J.A., & Benedict, F.G. (1918). A biometric study of human basal metabolism. Proceeding of the National Academy of Sciences of the United States of America, 4(12), 370373. doi:10.1073/pnas.4.12.370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henry, C.J., Dyer, S., & Ghusain-Choueiri, A. (1999). New equations to estimate basal metabolic rate in children aged 10–15 years. European Journal of Clinical Nutrition, 53(2), 134142. PubMed ID: 10099947 doi:10.1038/sj.ejcn.1600690

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Humes, K., Jones, N.A., & Ramirez, R. (2011). Overview of race and Hispanic origin: 2010. 2010 Census Briefs. Washington, DC: US Census Bureau.

    • Search Google Scholar
    • Export Citation
  • Jagim, A.R., Camic, C.L., Kisiolek, J., Luedke, J., Erickson, J., Jones, M.T., & Oliver, J.M. (2018). Accuracy of resting metabolic rate prediction equations in athletes. Journal of Strength and Conditioning Research, 32(7), 18751881. PubMed ID: 28682934 doi:10.1519/JSC.0000000000002111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.H., Kim, M.H., Kim, G.S., Park, J.S., & Kim, E.K. (2015). Accuracy of predictive equations for resting metabolic rate in Korean athletic and non-athletic adolescents. Nutrition Research and Practice, 9(4), 370378. PubMed ID: 26244075 doi:10.4162/nrp.2015.9.4.370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koziel, S.M., & Malina, R.M. (2018). Modified maturity offset prediction equations: Validation in independent longitudinal samples of boys and girls. Sports Medicine, 48(1), 221236. PubMed ID: 28608181 doi:10.1007/s40279-017-0750-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazzer, S., Agosti, F., De Col, A., & Sartorio, A. (2006). Development and cross-validation of prediction equations for estimating resting energy expenditure in severely obese Caucasian children and adolescents. British Journal of Nutrition, 96(5), 973979. PubMed ID: 17092390 doi:10.1017/BJN20061941

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazzer, S., Patrizi, A., De Col, A., Saezza, A., & Sartorio, A. (2014). Prediction of basal metabolic rate in obese children and adolescents considering pubertal stages and anthropometric characteristics or body composition. European Journal of Clinical Nutrition, 68(6), 695699. PubMed ID: 24595222 doi:10.1038/ejcn.2014.26

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loureiro, L.L., Fonseca, S., Jr., Castro, N.G., Dos Passos, R.B., Porto, C.P., & Pierucci, A.P. (2015). Basal metabolic rate of adolescent modern pentathlon athletes: Agreement between indirect calorimetry and predictive equations and the correlation with body parameters. PLoS One, 10(11), e0142859. PubMed ID: 26569101 doi:10.1371/journal.pone.0142859

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahan, L.K., Escott-Stump, S., Raymond, J.L., & Krause, M.V. (2012). Krause’s food and the nutrition care process. St. Louis, MO: Elsevier Health Sciences.

    • Search Google Scholar
    • Export Citation
  • Marshall, W.A., & Tanner, J.M. (1969). Variations in pattern of pubertal changes in girls. Archives of Disease in Childhood, 44(235), 291303. PubMed ID: 5785179 doi:10.1136/adc.44.235.291

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, W.A., & Tanner, J.M. (1970). Variations in the pattern of pubertal changes in boys. Archives of Disease in Childhood, 45(239), 1323. PubMed ID: 5440182 doi:10.1136/adc.45.239.13

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mifflin, M.D., St Jeor, S.T., Hill, L.A., Scott, B.J., Daugherty, S.A., & Koh, Y.O. (1990). A new predictive equation for resting energy expenditure in healthy individuals. American Journal of Clinical Nutrition, 51(2), 241247. PubMed ID: 2305711 doi:10.1093/ajcn/51.2.241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirwald, R.L., Baxter-Jones, A.D., Bailey, D.A., & Beunen, G.P. (2002). An assessment of maturity from anthropometric measurements. Medicine and Science in Sports and Exercise, 34(4), 689694. PubMed ID: 11932580

    • Search Google Scholar
    • Export Citation
  • Mountjoy, M., Sundgot-Borgen, J.K., Burke, L.M., Ackerman, K.E., Blauwet, C., Constantini, N., … Budgett, R. (2018). IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. British Journal of Sports Medicine, 52(11), 687697. PubMed ID: 29773536 doi:10.1136/bjsports-2018-099193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nana, A., Slater, G.J., Stewart, A.D., & Burke, L.M. (2015). Methodology review: Using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. International Journal of Sport Nutrition and Exercise Metabolism, 25(2), 198215. PubMed ID: 25029265 doi:10.1123/ijsnem.2013-0228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogol, A.D., Clark, P.A., & Roemmich, J.N. (2000). Growth and pubertal development in children and adolescents: Effects of diet and physical activity. American Journal of Clinical Nutrition, 72(2 Suppl), 521S528S. PubMed ID: 10919954 doi:10.1093/ajcn/72.2.521S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schofield, K.L., Thorpe, H., & Sims, S.T. (2019). Resting metabolic rate prediction equations and the validity to assess energy deficiency in the athlete population. Experimental Physiology, 104(4), 469475. PubMed ID: 30758869 doi:10.1113/EP087512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schofield, W.N. (1985). Predicting basal metabolic rate, new standards and review of previous work. Human Nutrition: Clinical Nutrition, 39(Suppl 1), 541.

    • Search Google Scholar
    • Export Citation
  • Yamashita, T., Yamashita, K., & Kamimura, R. (2007). A stepwise AIC method for variable selection in linear regression. Communications in Statistics–Theory and Methods, 36(13), 23952403. doi:10.1080/03610920701215639

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1013 1013 123
Full Text Views 61 61 14
PDF Downloads 40 40 13