Adaptations in GLUT4 Expression in Response to Exercise Detraining Linked to Downregulation of Insulin-Dependent Pathways in Cardiac but not in Skeletal Muscle Tissue

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology
  • 2 Federal University of Health Sciences of Porto Alegre
  • 3 Federal University of Rio Grande do Sul
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Insulin resistance is associated with cardiometabolic risk factors, and exercise training can improve insulin-mediated glucose uptake. However, few studies have demonstrated the reversibility of exercise-induced benefits. Thus, the authors examine the time–response effects of exercise training and detraining on glucose transporter 4 (GLUT4) content, insulin-dependent and insulin-independent pathways in cardiac and gastrocnemius muscle tissues of spontaneously hypertensive rats. Thirty-two male spontaneously hypertensive rats, 4 months old, were assigned to (n = 8/group): T (exercise training: 10-week treadmill exercise, 50–70% maximum effort capacity, 1 hr/day, 5 days/week); D2 (exercise training + 2-day detraining), D4 (exercise training + 4-day detraining); and S (no exercise). The authors evaluated insulin resistance, maximum effort capacity, GLUT4 content, p-IRS-1Tyr1179, p-AS160Ser588, p-AMPKα1Thr172, and p-CaMKIIThr286 in cardiac and gastrocnemius muscle tissues (Western blot). In response to exercise training, there were improvements in insulin resistance (15.4%; p = .010), increased GLUT4 content (microsomal, 29.4%; p = .012; plasma membrane, 27.1%; p < .001), p-IRS-1 (42.2%; p < .001), p-AS160 (60.0%; p < .001) in cardiac tissue, and increased GLUT4 content (microsomal, 29.4%; p = .009; plasma membrane, 55.5%; p < .001), p-IRS-1 (28.1%; p = .018), p-AS160 (76.0%; p < .001), p-AMPK-α1 (37.5%; p = .026), and p-CaMKII (30.0%; p = .040) in the gastrocnemius tissue. In D4 group, the exercise-induced increase in GLUT4 was reversed (plasma membrane, −21.3%; p = .027), p-IRS1 (−37.1%; p = .008), and p-AS160 (−82.6%; p < .001) in the cardiac tissue; p-AS160 expression (−35.7%; p = .034) was reduced in the gastrocnemius. In conclusion, the cardiac tissue is more susceptible to exercise adaptations in the GLUT4 content and signaling pathways than the gastrocnemius muscle. This finding may be explained by particular characteristics of insulin-dependent and insulin-independent pathways in the muscle tissues studied.

Lehnen, Pinto, and Borges are with the Institute of Cardiology of Rio Grande do Sul, University Foundation of Cardiology, Porto Alegre, RS, Brazil. Markoski is with the Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil. Schaan is with the Endocrine Division, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.

Schaan (bschaan@hcpa.edu.br) is corresponding author.
  • Armstrong, R.B., & Phelps, R.O. (1984). Muscle fiber type composition of the rat hindlimb. American Journal of Anatomy, 171(3), 259272. PubMed ID: 6517030 doi:10.1002/aja.1001710303

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaban, R.S. (2002). Cardiac energy metabolism homeostasis: Role of cytosolic calcium. Journal of Molecular and Cellular Cardiology, 34(10), 12591271. PubMed ID: 12392982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cartee, G.D., & Wojtaszewski, J.F. (2007). Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Applied Physiology, Nutrition, and Metabolism, 32(3), 557566. PubMed ID: 17510697 doi:10.1139/H07-026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, S., Dzeja, P.P., Faustino, R.S., Perez-Terzic, C., Behfar, A., & Terzic, A. (2007). Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nature Clinical Practice Cardiovascular Medicine, 4(Suppl. 1), S60S67. doi:10.1038/ncpcardio0766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daugaard, J.R., & Richter, E.A. (2004). Muscle- and fibre type-specific expression of glucose transporter 4, glycogen synthase and glycogen phosphorylase proteins in human skeletal muscle. Pflügers Archiv, 447(4), 452456. PubMed ID: 32200063 doi:10.1007/s00424-003-1195-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dugani, C.B., & Klip, A. (2005). Glucose transporter 4: Cycling, compartments and controversies. EMBO Reports, 6(12), 11371142. PubMed ID: 16319959 doi:10.1038/sj.embor.7400584

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodyear, L.J., Giorgino, F., Balon, T.W., Condorelli, G., & Smith, R.J. (1995). Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. American Journal of Physiology, 268(5, Pt. 1), E987E995. PubMed ID: 7762655 doi:10.1152/ajpendo.1995.268.5.E987

    • Search Google Scholar
    • Export Citation
  • Gottlieb, R.A., & Gustafsson, A.B. (2011). Mitochondrial turnover in the heart. Biochimica et Biophysica Acta, 1813(7), 12951301. PubMed ID: 21147177 doi:10.1016/j.bbamcr.2010.11.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloszy, J. (2005). Exercise-induced increase in muscle insulin sensitivity. Journal of Applied of Physiology, 99, 338343.

  • Host, H., Hansen, P., Nolte, L., Chen, M., & Holloszy, J. (1998). Rapid reversal of adaptive increases in muscle GLUT4 and glucose transport capacity after cessation of training. Journal of Applied of Physiology, 84, 798802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, H.K., Chibalin, A.V., Koistinen, H.A., Yang, J., Koumanov, F., Wallberg-Henriksson, H., … Holman, G.D. (2009). Kinetics of GLUT4 trafficking in rat and human skeletal muscle. Diabetes, 58(4), 847854. PubMed ID: 19188436 doi:10.2337/db08-1539

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katayama, S., Inaba, M., Maruno, Y., Morita, T., Awata, T., & Oka, Y. (1997). Glucose intolerance in spontaneously hypertensive and wistar-kyoto rats: Enhanced gene expression and synthesis of skeletal muscle glucose transporter 4. Hypertension Research, 20, 279286. PubMed ID: 9453263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larance, M., Ramm, G., & James, D. (2007). The GLUT4 code. Molecular Endocrinology, 22(2), 226233. PubMed ID: 17717074

  • Lebovitz, H.E. (2001). Insulin resistance: Definition and consequences. Experimental and Clinical Endocrinology & Diabetes, 109(2), S135148. doi:10.1055/s-2001-18576

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehnen, A.M., Leguisamo, N.M., Pinto, G.H., Markoski, M.M., De Angelis, K., Machado, U.F., & Schaan, B. (2010). The beneficial effects of exercise in rodents are preserved after detraining: A phenomenon unrelated to GLUT4 expression. Cardiovascular Diabetology, 9(1), 67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehnen, A.M., Leguisamo, N.M., Pinto, G.H., Markoski, M.M., De Angelis, K., Machado, U.F., & Schaan, B. (2011). Exercise-stimulated GLUT4 expression is similar in normotensive and hypertensive rats. Hormone and Metabolic Research, 43(4), 231235. PubMed ID: 21332027 doi:10.1055/s-0031-1271747

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, U., Shimizu, I., & Saito, M. (1994). Reduced content and preserved translocation of glucose transporter (GLUT 4) in white adipose tissue of obese mice. Physiology & Behavior, 55(4), 621625. PubMed ID: 8190786

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marschner, R.A., Pinto, G., Borges, J., Markoski, M.M., Schaan, B.D., & Lehnen, A.M. (2017). Short-term detraining does not change insulin sensitivity and RBP4 in rodents previously submitted to aerobic exercise. Hormone and Metabolic Research, 49(1), 5863. PubMed ID: 27589346 doi:10.1055/s-0042-115176

    • Search Google Scholar
    • Export Citation
  • McGee, S., Spasling, D., Olson, A., & Hargreaves, M. (2006). Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. The FASEB Journal, 20, 348349. PubMed ID: 16368714

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, R.C., Hirabara, S.M., Hirata, A.E., Okamoto, M.M., & Machado, U.F. (2008). Glimepiride as insulin sensitizer: increased liver and muscle responses to insulin. Diabetes, Obesity and Metabolism, 10(7), 596600. PubMed ID: 18355328

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ng, J.M., Azuma, K., Kelley, C., Pencek, R., Radikova, Z., Laymon, C., … Kelley, D.E. (2012). PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. American Journal of Physiology: Endocrinology and Metabolism, 303(9), E11341141. PubMed ID: 22967498 doi:10.1152/ajpendo.00282.2012

    • Search Google Scholar
    • Export Citation
  • Oki, K., Arias, E.B., Kanzaki, M., & Cartee, G.D. (2018). Prior treatment with the AMPK activator AICAR induces subsequently enhanced glucose uptake in isolated skeletal muscles from 24-month-old rats. Applied Physiology, Nutrition, and Metabolism, 43(8), 795805. PubMed ID: 29518344 doi:10.1139/apnm-2017-0858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedrosa, F., & Thornell, L.E. (1990). Expression of myosin heavy chain isoforms in developing rat muscle spindles. Histochemistry, 94(3), 231244. PubMed ID: 2144849 doi:10.1007/bf00266623

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeffer, J., Pfeffer, M., Fishbein, MC, Frohlich, ED. (1979). Cardiac function and morphology with aging in the spontaneously hypertensive rat. American Journal of Physiology, 237(4), H461H468. PubMed ID: 495731

    • Search Google Scholar
    • Export Citation
  • Sparling, D., Griesel, B., Weems, J., & Olson, A. (2008). GLUT4 Enhancer Factor (GEF) interacts with MEF2A and HDAC5 to regulate the GLUT4 Promoter in adipocytes. Journal of Biological Chemistry, 282(12), 74297447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thai, M.V., Guruswamy, S., Cao, K.T., Pessin, J.E., & Olson, A.L. (1998). Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes. Journal of Biological Chemistry, 273(23), 1428514292. PubMed ID: 9603935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treebak, J.T., Glund, S., Deshmukh, A., Klein, D.K., Long, Y.C., Jensen, T.E., … Wojtaszewski, J.F. (2006). AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes, 55(7), 20512058. PubMed ID: 16804075 doi:10.2337/db06-0175

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Arias, E.B., Oki, K., Pataky, M.W., Almallouhi, J.A., & Cartee, G.D. (2019). Fiber type-selective exercise effects on AS160 phosphorylation. American Journal of Physiology: Endocrinology and Metabolism, 316(5), E837E851. PubMed ID: 30835507 doi:10.1152/ajpendo.00528.2018

    • Search Google Scholar
    • Export Citation
  • Zierath, J.R., Krook, A., & Wallberg-Henriksson, H. (2000). Insulin action and insulin resistance in human skeletal muscle. Diabetologia, 43(7), 821835. PubMed ID: 10952453 doi:10.1007/s001250051457

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 330 330 130
Full Text Views 26 26 11
PDF Downloads 16 16 6