Effect of Dark Chocolate Supplementation on Tissue Oxygenation, Metabolism, and Performance in Trained Cyclists at Altitude

Click name to view affiliation

Keely Shaw University of Saskatchewan

Search for other papers by Keely Shaw in
Current site
Google Scholar
PubMed
Close
*
,
Jyotpal Singh University of Regina

Search for other papers by Jyotpal Singh in
Current site
Google Scholar
PubMed
Close
*
,
Luke Sirant University of Regina

Search for other papers by Luke Sirant in
Current site
Google Scholar
PubMed
Close
*
,
J. Patrick Neary University of Regina

Search for other papers by J. Patrick Neary in
Current site
Google Scholar
PubMed
Close
*
, and
Philip D. Chilibeck University of Saskatchewan

Search for other papers by Philip D. Chilibeck in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Dark chocolate (DC) is high in flavonoids and has been shown to increase nitric oxide in the blood. Increased nitric oxide has the potential to improve delivery of oxygen to muscle, especially in hypoxic conditions, such as altitude. Our aim was to assess the impact of DC supplementation on cycling performance at altitude. Twelve healthy, trained cyclists (n = 2 females, n = 10 males; age = 35 [12] years; height = 177 [7] cm; mass = 75.2 [11.0] kg; VO2max = 55 [6] ml·kg−1·min−1) were randomized to supplement with 60 g of DC or placebo twice per day for 14 days in a double-blind crossover study. After the 2 weeks of supplementation, the participants attended a laboratory session in which they consumed 120 g of DC or placebo and then cycled for 90 min at 50% peak power output, followed immediately by a 10-km time trial (TT) at simulated altitude (15% O2). The plasma concentration of blood glucose and lactate were measured before and at 15, 30, 60, and 90 min during the steady-state exercise and post TT, while muscular and prefrontal cortex oxygenation was measured continuously throughout exercise using near-infrared spectroscopy. DC resulted in a higher concentration of blood glucose (5.5 [0.5] vs. 5.3 [0.9] mmol/L) throughout the trial and lower blood lactate concentration following the TT (7.7 [1.92] vs. 10.0 [4.6] mmol/L) compared with the placebo. DC had no effect on the TT performance (19.04 [2.16] vs. 19.21 ± 1.96 min) or oxygenation status in either the prefrontal cortex or muscle. The authors conclude that, although it provided some metabolic benefit, DC is not effective as an ergogenic aid during TT cycling at simulated altitude.

Shaw and Chilibeck are with the University of Saskatchewan, Saskatoon, Canada. Singh, Sirant, and Neary are with the University of Regina, Regina, Canada.

Chilibeck (Phil.chilibeck@usask.ca) is corresponding author.
  • Collapse
  • Expand
  • Allgrove, J., Farrell, E., Gleeson, M., Williamson, G., & Cooper, K. (2011). Regular dark chocolate consumption’s reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling. International Journal of Sport Nutrition and Exercise Metabolism, 21(2), 113123. PubMed ID: 21558573 doi:10.1123/ijsnem.21.2.113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amann, M., & Calbet, J.A. (2008). Convective oxygen transport and fatigue. Journal of Applied Physiology, 104(3), 861870. PubMed ID: 17962570 doi:10.1152/japplphysiol.01008.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-Raventos, R.M. (2008). Flavanol and flavanol contents of cocoa powder products: Influence of the manufacturing process. Journal of Agricultural and Food Chemistry, 56(9), 31113117. doi:10.1021/jf0728754

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balke, B., Nagle, F.J., & Daniels, J. (1965). Altitude and maximum performance in work and sports activity. JAMA, 194(6), 646649. PubMed ID: 5897239 doi:10.1001/jama.1965.03090190068016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayat, C.E., Fatahi, M., Tabei, A., & Najarzadeh, A. (2014). Antioxidants and muscle damage. Nutrition and Food Sciences Research, 1(1), 87

    • Search Google Scholar
    • Export Citation
  • Brossette, T., Hundsdörfer, C., Kröncke, K.D., Sies, H., & Stahl, W. (2011). Direct evidence that (−)-epicatechin increases nitric oxide levels in human endothelial cells. European Journal of Nutrition, 50(7), 595599. PubMed ID: 21327831 doi:10.1007/s00394-011-0172-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canadian Society for Exercise Physiology. (2017). Get active questionnaire. Retrieved from https://www.csep.ca/CMFiles/GAQ_CSEPPATHReadinessForm_2pages.pdf

    • Search Google Scholar
    • Export Citation
  • Castro-Barquero, S., Lamuela-Raventós, R.M., Doménech, M., & Estruch, R. (2018). Relationship between Mediterranean dietary polyphenol intake and obesity. Nutrients, 10(10), 1523. doi:10.3390/nu10101523

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cermak, N.M., Gibala, M.J., & Van Loon, L.J. (2012). Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. International Journal of Sport Nutrition and Exercise Metabolism, 22(1), 6471 PubMed ID: 22248502 doi:10.1123/ijsnem.22.1.64

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coppel, J., Hennis, P., Gilbert-Kawai, E., & Grocott, M.P. (2015). The physiological effects of hypobaric hypoxia versus normobaric hypoxia: A systematic review of crossover trials. Extreme Physiology & Medicine, 4(1), 2. doi:10.1186/s13728-014-0021-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, G., Callister, R., Williamson, G., Cooper, K.A., & Gleeson, M. (2012). The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exercise. European Journal of Nutrition, 51(1), 6979. PubMed ID: 21465244 doi:10.1007/s00394-011-0193-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decroix, L., Tonoli, C., Lespagnol, E., Balestra, C., Descat, A., Drittij-Reijnders, M.J., … Heyman, E. (2018). One-week cocoa flavanol intake increases prefrontal cortex oxygenation at rest and during moderate-intensity exercise in normoxia and hypoxia. Journal of Applied Physiology, 125(1), 818. PubMed ID: 29543135 doi:10.1152/japplphysiol.00055.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decroix, L., Tonoli, C., Soares, D.D., Tagougui, S., Heyman, E., & Meeusen, R. (2016). Acute cocoa flavanol improves cerebral oxygenation without enhancing executive function at rest or after exercise. Applied Physiology, Nutrition, and Metabolism, 41(12), 12251232. PubMed ID: 27849355 doi:10.1139/apnm-2016-0245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domínguez, R., Cuenca, E., Maté-Muñoz, J., García-Fernández, P., Serra-Paya, N., Estevan, M., … Garnacho-Castaño, M. (2017). Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients, 9(1), 43. doi:10.3390/nu9010043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, R.E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., & Sul, H.S. (2007). Regulation of lipolysis in adipocytes. Annual Review of Nutrition, 27(1), 79101. PubMed ID: 17313320 doi:10.1146/annurev.nutr.27.061406.093734

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faridi, Z., Njike, V.Y., Dutta, S., Ali, A., & Katz, D.L. (2008). Acute dark chocolate and cocoa ingestion and endothelial function: A randomized controlled crossover trial. The American Journal of Clinical Nutrition, 88(1), 5863. PubMed ID: 18614724 doi:10.1093/ajcn/88.1.58

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63(2), 921935. PubMed ID: 22510258 doi:10.1016/j.neuroimage.2012.03.049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harland, B.F. (2000). Caffeine and nutrition. Nutrition, 16(7–8), 522526. doi:10.1016/S0899-9007(00)00369-5

  • Hochachka, P.W., Stanley, C., Matheson, G.O., McKenzie, D.C., Allen, P.S., & Parkhouse, W.S. (1991). Metabolic and work efficiencies during exercise in Andean natives. Journal of Applied Physiology, 70(4), 17201730. PubMed ID: 2055851 doi:10.1152/jappl.1991.70.4.1720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollenbeck, C.B., Coulston, A.M., & Reaven, G.M. (1986). Glycemic effects of carbohydrates: A different perspective. Diabetes Care, 9(6), 641647. PubMed ID: 3803155 doi:10.2337/diacare.9.6.641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A., & Wallis, G. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26(Suppl. 1), S28S37. doi:10.1055/s-2004-830512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaminsky, L.A., Arena, R., & Myers, J. (2015). Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: Data from the Fitness Registry and the Importance of Exercise National Database. Mayo Clinic Proceedings, 90(11), 15151523. PubMed ID: 26455884 doi:10.1016/j.mayocp.2015.07.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masschelein, E., Van Thienen, R., Wang, X., Van Schepdael, A., Thomis, M., & Hespel, P. (2012). Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia. Journal of Applied Physiology, 113(5), 736745. PubMed ID: 22773768 doi:10.1152/japplphysiol.01253.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, C.C., Jalil, A.M.M., & Ismail, A. (2009). Phenolic and theobromine contents of commercial dark, milk and white chocolates on the Malaysian market. Molecules, 14(1), 200209. PubMed ID: 19127248 doi:10.3390/molecules14010200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, K.B., Hurst, W.J., Flannigan, N., Ou, B., Lee, C.Y., Smith, N., & Stuart, D.A. (2009). Survey of commercially available chocolate and cocoa-containing products in the United States. 2. Comparison of flavan-3-ol content with nonfat cocoa solids, total polyphenols, and percent cacao. Journal of agricultural and food chemistry, 57(19), 91699169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muggeridge, D.J., Howe, C., Spendiff, O., Pedlar, C., James, P.E., & Easton, C. (2014). A single dose of beetroot juice enhances cycling performance in simulated altitude. Medicine & Science in Sports & Exercise, 46(1), 143150. PubMed ID: 23846159 doi:10.1249/MSS.0b013e3182a1dc51

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neary, J.P., McKenzie, D.C., & Bhambhani, Y.N. (2002). Effects of short-term endurance training on muscle deoxygenation trends using NIRS. Medicine & Science in Sports & Exercise, 34(11), 17251732. PubMed ID: 12439075 doi:10.1097/00005768-200211000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oosthuyse, T., & Bosch, A.N. (2010). The effect of the menstrual cycle on exercise metabolism. Sports Medicine, 40(3), 207227. PubMed ID: 20199120 doi:10.2165/11317090-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostertag, L.M., Philo, M., Colquhoun, I.J., Tapp, H.S., Saha, S., Duthie, G.G., … Le Gall, G. (2017). Acute consumption of flavan-3-ol-enriched dark chocolate affects human endogenous metabolism. Journal of Proteome Research, 16(7), 25162526. PubMed ID: 28585834 doi:10.1021/acs.jproteome.7b00089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patel, R.K., Brouner, J., & Spendiff, O. (2015). Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling. Journal of the International Society of Sports Nutrition, 12(1), 47. PubMed ID: 26674253 doi:10.1186/s12970-015-0106-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peschek, K., Pritchett, R., Bergman, E., & Pritchett, K. (2014). The effects of acute post exercise consumption of two cocoa-based beverages with varying flavanol content on indices of muscle recovery following downhill treadmill running. Nutrients, 6(1), 5062. doi:10.3390/nu6010050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schewe, T., Steffen, Y., & Sies, H. (2008). How do dietary flavanols improve vascular function? A position paper. Archives of Biochemistry and Biophysics, 476(2), 102106. PubMed ID: 18358827 doi:10.1016/j.abb.2008.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senefeld, J.W., Wiggins, C.C., Regimbal, R.J., Dominelli, P.B., Baker, S.E., & Joyner, M.J. (2020). Ergogenic effect of nitrate supplementation: A systematic review and meta-analysis. Medicine & Science in Sports & Exercise. Advance online publication. doi:10.1249/mss.0000000000002363

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shannon, O.M., McGawley, K., Nybäck, L., Duckworth, L., Barlow, M.J., Woods, D., … O’Hara, J.P. (2017). “Beet-ing” the mountain: A review of the physiological and performance effects of dietary nitrate supplementation at simulated and terrestrial altitude. Sports Medicine, 47(11), 21552169. PubMed ID: 28577258 doi:10.1007/s40279-017-0744-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shvartz, E., & Reibold, R.C. (1990). Aerobic fitness norms for males and females aged 6 to 75 years: A review. Aviation, Space, and Environmental Medicine, 61(1), 311. PubMed ID: 2405832

    • Search Google Scholar
    • Export Citation
  • Somerville, V., Bringans, C., & Braakhuis, A. (2017). Polyphenols and performance: A systematic review and meta-analysis. Sports Medicine, 47(8), 15891599. PubMed ID: 28097488 doi:10.1007/s40279-017-0675-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stellingwerff, T., Godin, J., Chou, C.J., Grathwohl, D., Ross, A.B., Cooper, K.A., … Actis-Goretta, L. (2014). The effect of acute dark chocolate consumption on carbohydrate metabolism and performance during rest and exercise. Applied Physiology, Nutrition, and Metabolism, 39(2), 173182. PubMed ID: 24476473 doi:10.1139/apnm-2013-0152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenberg, J., Ekblom, B., & Messin, R. (1966). Hemodynamic response to work at simulated altitude, 4,000 m. Journal of Applied Physiology, 21(5), 15891594. PubMed ID: 5923231 doi:10.1152/jappl.1966.21.5.1589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Subudhi, A.W., Dimmen, A.C., & Roach, R.C. (2007). Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. Journal of Applied Physiology, 103(1), 177183. PubMed ID: 17431082 doi:10.1152/japplphysiol.01460.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sudarma, V., Sukmaniah, S., & Siregar, P. (2011). Effect of dark chocolate on nitric oxide serum levels and blood pressure in prehypertension subjects. Acta Medica Indonesiana, 43(4), 224228. PubMed ID: 22156352

    • Search Google Scholar
    • Export Citation
  • Thomas, R., & Stephane, P. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 102(2), 153163. doi:10.1007/s00421-007-0568-7

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5411 1065 47
Full Text Views 348 88 4
PDF Downloads 266 51 2