Short-Term Precision Error of Body Composition Assessment Methods in Resistance-Trained Male Athletes

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 University of the Sunshine Coast
  • 2 Durham University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Athletic populations require high-precision body composition assessments to identify true change. Least significant change determines technical error via same-day consecutive tests but does not integrate biological variation, which is more relevant for longitudinal monitoring. The aim of this study was to assess biological variation using least significant change measures from body composition methods used on athletes, including surface anthropometry (SA), air displacement plethysmography (BOD POD), dual-energy X-ray absorptiometry (DXA), and bioelectrical impedance spectroscopy (BIS). Thirty-two athletic males (age = 31 ± 7 years; stature = 183 ± 7 cm; mass = 92 ± 10 kg) underwent three testing sessions over 2 days using four methods. Least significant change values were calculated from differences in Day 1 Test 1 versus Day 1 Test 2 (same-day precision), as well as Day 1 Test 1 versus Day 2 (consecutive-day precision). There was high agreement between same-day and consecutive-day fat mass and fat-free mass measurements for all methods. Consecutive-day precision error in comparison with the same-day precision error was 50% higher for fat mass estimates from BIS (3,607 vs. 2,331 g), 25% higher from BOD POD (1,943 vs. 1,448 g) and DXA (1,615 vs. 1,204 g), but negligible from SA (442 vs. 586 g). Consecutive-day precision error for fat-free mass was 50% higher from BIS (3,966 vs. 2,276 g) and SA (1,159 vs. 568 g) and 25% higher from BOD POD (1,894 vs. 1,450 g) and DXA (1,967 vs. 1,461 g) than the same-day precision error. Precision error in consecutive-day analysis considers both technical error and biological variation, enhancing the identification of small, yet significant changes in body composition of resistance-trained male athletes. Given that change in physique is likely to be small in this population, the use of DXA, BOD POD, or SA is recommended.

Farley and Slater are with the School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia. Hind is with the Department of Sport and Exercise Sciences, Durham University, Durham, United Kingdom.

Farley (afarley@usc.edu.au) is corresponding author.
  • Ackland, T.R., Lohman, T.G., Sundgot-Borgen, J., Maughan, R.J., Meyer, N.L., Stewart, A.D., & Müller, W. (2012). Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Medicine, 42(3), 227249. PubMed ID: 22303996 doi:10.2165/11597140-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M.J., Oldroyd, B., Smith, D., Lees, M.J., Brightmore, A., Till, K., … Hind, K. (2015). Precision error in dual-energy X-ray absorptiometry body composition measurements in elite male rugby league players. Journal of Clinical Densitometry, 18(4), 546550. PubMed ID: 26072358 doi:10.1016/j.jocd.2015.04.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bilsborough, J.C., Greenway, K., Livingston, S., Cordy, J., & Coutts, A.J. (2016). Changes in anthropometry, upper-body strength, and nutrient intake in professional Australian football players during a season. International Journal of Sports Physiology and Performance, 11(3), 290300. PubMed ID: 26217046 doi:10.1123/ijspp.2014-0447

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bilsborough, J.C., Greenway, K., Opar, D., Livingstone, S., Cordy, J., & Coutts, A.J. (2014). The accuracy and precision of DXA for assessing body composition in team sport athletes. Journal of Sports Sciences, 32(19), 18211828. PubMed ID: 24914773 doi:10.1080/02640414.2014.926380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binkley, T.L., Daughters, S.W., Weidauer, L.A., & Vukovich, M.D. (2015). Changes in body composition in Division I football players over a competitive season and recovery in off-season. Journal of Strength & Conditioning Research, 29(9), 25032512. PubMed ID: 26313574 doi:10.1519/JSC.0000000000000886

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bone, J.L., Ross, M.L., Tomcik, K.A., Jeacocke, N.A., Hopkins, W.G., & Burke, L.M. (2017). Manipulation of muscle creatine and glycogen changes DXA estimates of body composition. Medicine & Science in Sports & Exercise, 49(5), 10291035. doi:10.1249/MSS.0000000000001174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornish, B.H., Ward, L.C., Thomas, B.J., Jebb, S.A., & Elia, M. (1996). Evaluation of multiple frequency bioelectrical impedance and Cole–Cole analysis for the assessment of body water volumes in healthy humans. European Journal of Clinical Nutrition, 50(3), 159164. PubMed ID: 8654329

    • Search Google Scholar
    • Export Citation
  • De Lorenzo, A., Andreoli, A., & Candeloro, N. (1997). Within-subject variability in body composition using dual-energy X-ray absorptiometry. Clinical Physiology, 17(4), 383388. PubMed ID: 19361149 doi:10.1046/j.1365-2281.1997.04242.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dempster, P., & Aitkens, S. (1995). A new air displacement method for the determination of human body composition. Medicine & Science in Sports & Exercise, 27(12), 16921697. PubMed ID: 8614327 doi:10.1249/00005768-199512000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, E.M., Rowe, D.A., Misic, M.M., Prior, B.M., & Arngrímsson, S.Á. (2005). Skinfold prediction equation for athletes developed using a four-component model. Medicine & Science in Sports & Exercise, 37(11), 20062011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fields, D.A., Higgins, P., & Hunter, G. (2004). Assessment of body composition by air-displacement plethysmography: Influence of body temperature and moisture. Dynamic Medicine, 3(1), 3. PubMed ID: 15059287 doi:10.1186/1476-5918-3-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fields, D.A., Hunter, G.R., & Goran, M.I. (2000). Validation of the BOD POD with hydrostatic weighing: Influence of body clothing. International Journal of Obesity, 24(2), 200205. PubMed ID: 10702771 doi:10.1038/sj.ijo.0801113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabbett, T.J. (2009). Physiological and anthropometric correlates of tackling ability in rugby league players. Journal of Strength & Conditioning Research, 23(2), 540548. PubMed ID: 19197211 doi:10.1519/JSC.0b013e31818efe8b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hangartner, T.N., Warner, S., Braillon, P., Jankowski, L., & Shepherd, J. (2013). The official positions of the international society for clinical densitometry: Acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. Journal of Clinical Densitometry, 16(4), 520536. PubMed ID: 24183641 doi:10.1016/j.jocd.2013.08.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harley, J.A., Hind, K., & O’Hara, J.P. (2011). Three-compartment body composition changes in elite rugby league players during a super league season, measured by dual-energy X-ray absorptiometry. Journal of Strength & Conditioning Research, 25(4), 10241029. PubMed ID: 20651606 doi:10.1519/JSC.0b013e3181cc21fb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hind, K., Slater, G., Oldroyd, B., Lees, M., Thurlow, S., Barlow, M., & Shepherd, J. (2018). Interpretation of dual-energy X-ray absorptiometry-derived body composition change in athletes: A review and recommendations for best practice. Journal of Clinical Densitometry, 21(3), 429443. PubMed ID: 29754949 doi:10.1016/j.jocd.2018.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hume, P., Kerr, D.A., & Ackland, T.R. (Eds.). (2018). Best practice protocols for physique assessment in sport. Singapore: Springer.

  • Hume, P., & Marfell-Jones, M. (2008). The importance of accurate site location for skinfold measurement. Journal of Sports Sciences, 26(12), 13331340. PubMed ID: 18821122 doi:10.1080/02640410802165707

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, A., Slater, G.J., Byrne, N. (2017). Impact of food and fluid intake on technical and biological measurement error in body composition assessment methods in athletes. British Journal of Nutrition, 117(4), 591601. doi:10.1017/S0007114517000551

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, A., Slater, G.J., & Byrne, N.M. (2018). Influence of subject presentation on interpretation of body composition change after 6 months of self-selected training and diet in athletic males. European Journal of Applied Physiology, 118(6), 12731286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, A., Slater, G.J., Byrne, N.M., & Chaseling, J. (2015). Validation of bioelectrical impedance spectroscopy to measure total body water in resistance-trained males. International Journal of Sport Nutrition and Exercise Metabolism, 25(5), 494503. PubMed ID: 26011918 doi:10.1123/ijsnem.2014-0188

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, A., Slater, G.J., Byrne, N.M., & Nana, A. (2016). Reliability of 2 different positioning protocols for dual-energy X-ray absorptiometry measurement of body composition in healthy adults. Journal of Clinical Densitometry, 19(3), 282289. PubMed ID: 26343822 doi:10.1016/j.jocd.2015.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyle, U.G., Bosaeus, I., De Lorenzo, A.D., Deurenberg, P., Elia, M., Manuel Gómez, J., … Pichard, C. (2004). Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clinical Nutrition, 23(6), 14301453. PubMed ID: 15556267 doi:10.1016/j.clnu.2004.09.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambrinoudaki, I., Georgiou, E., Douskas, G., Tsekes, G., Kyriakidis, M., & Proukakis, C. (1998). Body composition assessment by dual-energy X-ray absorptiometry: Comparison of prone and supine measurements. Metabolism: Clinical and Experimental, 47(11), 13791382. doi:10.1016/S0026-0495(98)90309-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lees, M.J., Oldroyd, B., Jones, B., Brightmore, A., O’Hara, J.P., Barlow, M.J., … Hind, K. (2017). Three-compartment body composition changes in professional rugby union players over one competitive season: A team and individualized approach. Journal of Clinical Densitometry, 20(1), 5057. PubMed ID: 27161801 doi:10.1016/j.jocd.2016.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marfell-Jones, M.J., Stewart, A., & de Ridder, J. (2012). International standards for anthropometric assessment. Wellington, New Zealand: International Society for the Advancement of Kinanthropometry.

    • Search Google Scholar
    • Export Citation
  • McCrory, M.A., Molé, P.A., Gomez, T.D., Dewey, K.G., & Bernauer, E.M. (1998). Body composition by air-displacement plethysmography by using predicted and measured thoracic gas volumes. Journal of Applied Physiology, 84(4), 14751479. PubMed ID: 9516218 doi:10.1152/jappl.1998.84.4.1475

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, N.L., Sundgot-Borgen, J., Lohman, T.G., Ackland, T.R., Stewart, A.D., Maughan, R.J., … Müller, W. (2013). Body composition for health and performance: A survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on Body Composition, Health and Performance under the auspices of the IOC Medical Commission. British Journal of Sports Medicine, 47(16), 10441053. PubMed ID: 24065075 doi:10.1136/bjsports-2013-092561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nana, A., Slater, G.J., Hopkins, W.G., & Burke, L.M. (2012a). Effects of daily activities on dual-energy X-ray absorptiometry measurements of body composition in active people. Medicine & Science in Sports & Exercise, 44(1), 180189. doi:10.1249/MSS.0b013e318228b60e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nana, A., Slater, G.J., Hopkins, W.G., & Burke, L.M. (2012b). Techniques for undertaking dual-energy X-ray absorptiometry whole-body scans to estimate body composition in tall and/or broad subjects. International Journal of Sport Nutrition and Exercise Metabolism, 22(5), 313322. doi:10.1123/ijsnem.22.5.313

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nana, A., Slater, G.J., Stewart, A.D., & Burke, L.M. (2015). Methodology review: Using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. International Journal of Sport Nutrition and Exercise Metabolism, 25(2), 198215. PubMed ID: 25029265 doi:10.1123/ijsnem.2013-0228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, K., Whittingham, N., Carter, L., Kerr, D., Gore, C., & Marfell-Jones, M. (1996). Measurement techniques in anthropometry. In N. Kevin (Ed.), Anthropometrica (1st ed., pp. 2575). Kensington, Australia: University of New South Wales Press Ltd.

    • Search Google Scholar
    • Export Citation
  • O’brien, C., Young, A., & Sawka, M. (2002). Bioelectrical impedance to estimate changes in hydration status. International Journal of Sports Medicine, 23(5), 361366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olds, T. (2001). The evolution of physique in male rugby union players in the twentieth century. Journal of Sports Sciences, 19(4), 253262. PubMed ID: 11311023 doi:10.1080/026404101750158312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pace, N., & Rathbun, E.N. (1945). Studies on body composition. 3. The body water and chemically combined nitrogen content in relation to fat content. Journal of Biological Chemistry, 158, 685691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouillier, M.A., David-Riel, S., Brazeau, A.S., St-Pierre, D.H., & Karelis, A.D. (2015). Effect of an acute high carbohydrate diet on body composition using DXA in young men. Annals of Nutrition and Metabolism, 66(4), 233236. PubMed ID: 26183608 doi:10.1159/000435840

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz, L., Colley, J.R., & Hamilton, P.J. (1971). Measurement of triceps skinfold thickness. An investigation of sources of variation. British Journal of Preventive and Social Medicine, 25(3), 165167. PubMed ID: 5564960

    • Search Google Scholar
    • Export Citation
  • Saunders, M.J., Blevins, J.E., & Broeder, C.E. (1998). Effects of hydration changes on bioelectrical impedance in endurance trained individuals. Medicine & Science in Sports & Exercise, 30(6), 885892. PubMed ID: 9624647

    • Search Google Scholar
    • Export Citation
  • Siri, W.E. (1961). Body composition from fluid spaces and density: Analysis of methods. Nutrition, 9(5), 480491.

  • Slater, G.J., Rice, A.J., Mujika, I., Hahn, A.G., Sharpe, K., & Jenkins, D.G. (2005). Physique traits of lightweight rowers and their relationship to competitive success. British Journal of Sports Medicine, 39(10), 736741. PubMed ID: 16183770 doi:10.1136/bjsm.2004.015990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smart, D.J., Hopkins, W.G., & Gill, N.D. (2013). Differences and changes in the physical characteristics of professional and amateur rugby union players. Journal of Strength & Conditioning Research, 27(11), 30333044. PubMed ID: 23603998 doi:10.1519/JSC.0b013e31828c26d3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegenkamp, M.H., Clark, R.R., Schoeller, D.A., & Landry, G.L. (2011). Effects of covert subject actions on percent body fat by air-displacement plethsymography. Journal of Strength & Conditioning Research, 25(7), 20102017. PubMed ID: 21499137 doi:10.1519/JSC.0b013e3181e741b6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toombs, R.J., Ducher, G., Shepherd, J.A., & De Souza, M.J. (2011). The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity, 20(1), 3039. PubMed ID: 21760631 doi:10.1038/oby.2011.211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vescovi, J.D., Zimmerman, S.L., Miller, W.C., & Fernhall, B. (2002). Effects of clothing on accuracy and reliability of air displacement plethysmography. Medicine & Science in Sports & Exercise, 34(2), 282285. PubMed ID: 11828238 doi:10.1097/00005768-200202000-00016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitale, K.C., Owens, R., Hopkins, S.R., & Malhotra, A. (2019). Sleep hygiene for optimizing recovery in athletes: Review and recommendations. International Journal of Sports Medicine, 40(8), 535543. PubMed ID: 31288293 doi:10.1055/a-0905-3103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, L.C., Isenring, E., Dyer, J.M., Kagawa, M., & Essex, T. (2015). Resistivity coefficients for body composition analysis using bioimpedance spectroscopy: Effects of body dominance and mixture theory algorithm. Physiological Measurement, 36(7), 15291549. PubMed ID: 26034992 doi:10.1088/0967-3334/36/7/1529

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemski, A.J., Hind, K., Keating, S.E., Broad, E.M., Marsh, D.J., & Slater, G.J. (2019). Same-day vs consecutive-day precision error of dual-energy X-ray absorptiometry for interpreting body composition change in resistance-trained athletes. Journal of Clinical Densitometry, 22(1), 104114. PubMed ID: 30454952 doi:10.1016/j.jocd.2018.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 626 626 374
Full Text Views 24 24 7
PDF Downloads 16 16 4