No Effects of Different Doses of New Zealand Blackcurrant Extract on Cardiovascular Responses During Rest and Submaximal Exercise Across a Week in Trained Male Cyclists

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 University of Chichester
  • 2 Hacettepe University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Supplementation with anthocyanin-rich blackcurrant increases blood flow, cardiac output, and stroke volume at rest. It is not known whether cardiovascular responses can be replicated over longer timeframes in fed trained cyclists. In a randomized, double-blind, crossover design, 13 male trained cyclists (age 39 ± 10 years, V˙O2max 55.3 ± 6.7 ml·kg−1·min−1) consumed two doses of New Zealand blackcurrant (NZBC) extract (300 and 600 mg/day for 1 week). Cardiovascular parameters were measured during rest and submaximal cycling (65% V˙O2max) on day 1 (D1), D4, and D7. Data were analyzed with an RM ANOVA using dose (placebo vs. 300 vs. 600 mg/day) by time point (D1, D4, and D7). Outcomes from placebo were averaged to determine the coefficient of variation within our experimental model, and 95% confidence interval (CI) was examined for differences between placebo and NZBC. There were no differences in cardiovascular responses at rest between conditions and between days. During submaximal exercise, no positive changes were observed on D1 and D4 after consuming NZBC extract. On D7, intake of 600 mg increased stroke volume (3.08 ml, 95% CI [−2.08, 8.26]; d = 0.16, p = .21), cardiac output (0.39 L/min, 95% CI [−1.39, .60]; d = 0.14, p = .40) (both +2.5%), and lowered total peripheral resistance by 6.5% (−0.46 mmHg·min/ml, 95% CI [−1.80, .89]; d = 0.18, p = .46). However, these changes were trivial and fell within the coefficient of variation of our study design. Therefore, we can conclude that NZBC extract was not effective in enhancing cardiovascular function during rest and submaximal exercise in endurance-trained fed cyclists.

Montanari, Şahin, Lee, Blacker, and Willems are with the Institute of Sport, University of Chichester, Chichester, United Kingdom. Şahin is also with the Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.

Willems (m.willems@chi.ac.uk) is corresponding author.
  • Alvarez-Suarez, J.M., Giampieri, F., Tulipani, S., Casoli, T., Di Stefano, G., González-Paramás, A.M., … Battino, M. (2014). One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. Journal of Nutritional Biochemistry, 25(3), 289294. PubMed ID: 24406274 doi:10.1016/j.jnutbio.2013.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barroso, M.T.C., Hoppe, M.W., Boehme, P., Krahn, T., Kiefer, C., Kramer, F., … Dinh, W. (2019). Test-retest reliability of non-invasive cardiac output measurement during exercise in healthy volunteers in daily clinical routine. Arquivos Brasileiros de Cardiologia, 113(2), 231239. PubMed ID: 31291418 doi:10.5935/abc.20190116

    • Search Google Scholar
    • Export Citation
  • Bassett, D.R., & Howley, E.T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine & Science in Sports & Exercise, 32(1), 7084. PubMed ID: 10647532 doi:10.1097/00005768-200001000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, P.G., Walshe, I.H., Davison, G.W., Stevenson, E.J., & Howatson, G. (2015). Recovery facilitation with montmorency cherries following high-intensity, metabolically challenging exercise. Applied Physiology, Nutrition and Metabolism, 40(4), 414423. doi:10.1139/apnm-2014-0244

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M. (2017). Practical issues in evidence-based use of performance supplements: Supplement interactions, repeated use and individual responses. Sports Medicine, 47(s1), 79100. doi:10.1007/s40279-017-0687-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrzanowski-Smith, O.J., Edinburgh, R.M., Thomas, M.P., Haralabidis, N., Williams, S., Betts, J.A., & Gonzalez, J.T. (2020). The day-to-day reliability of peak fat oxidation and FATMAX. European Journal of Applied Physiology, 120, 17451759. doi:10.1007/s00421-020-04397-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: L. Erlbaum Associates.

  • Cook, M.D., Myers, S.D., Blacker, S.D., & Willems, M.E.T. (2015). New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. European Journal of Applied Physiology, 115(11), 23572365. PubMed ID: 26175097 doi:10.1007/s00421-015-3215-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Gault, M.L., Edwards, V.C., & Willems, M.E.T. (2017a). Cardiovascular function during supine rest in endurance-trained males with New Zealand blackcurrant: A dose–response study. European Journal of Applied Physiology, 117(2), 247254. PubMed ID: 28013387 doi:10.1007/s00421-016-3512-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Gault, M.L., & Willems, M.E.T. (2017b). Blackcurrant alters physiological responses and femoral artery diameter during sustained isometric contraction. Nutrients, 9(6), 556. doi:10.3390/nu9060556

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cugini, P., Di Palma, L., Di Simone, S., Lucia, P., Battisti, P., Coppola, A., & Leone, G. (1993). Circadian rhythm of cardiac output, peripheral vascular resistance, and related variables by a beat-to-beat monitoring. Chronobiology International, 10(1), 7378. PubMed ID: 8443846 doi:10.3109/07420529309064484

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czank, C., Cassidy, A., Zhang, Q., Morrison, D.J., Preston, T., Kroon, P.A., … Kay, C.D. (2013). Human metabolism and elimination of the anthocyanin. The American Journal of Clinical Nutrition, 97(5), 9951003. PubMed ID: 23604435 doi:10.3945/ajcn.112.049247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Ferrars, R.M., Cassidy, A., Curtis, P., & Kay, C.D. (2014). Phenolic metabolites of anthocyanins following a dietary intervention study in post-menopausal women. Molecular Nutrition and Food Research, 58(3), 490502. PubMed ID: 24170677 doi:10.1002/mnfr.201300322

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, M., Czank, C., Woodward, G.M., Cassidy, A., & Kay, C.D. (2015). Phenolic metabolites of anthocyanins modulate mechanisms of endothelial function. Journal of Agricultural and Food Chemistry, 63(9), 24232431. PubMed ID: 25686009 doi:10.1021/jf5041993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekblom, B., & Hermansen, L. (1968). Cardiac output in athletes. Journal of Applied Physiology, 25(5), 619625. PubMed ID: 4879852 doi:10.1152/jappl.1968.25.5.619

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairlie-Jones, L., Davison, K., Fromentin, E., & Hill, A.M. (2017). The effect of anthocyanin-rich foods or extracts on vascular function in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients, 9(8), 908. doi:10.3390/nu9080908

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, D.J., Maiorana, A., O’Driscoll, G., & Taylor, R. (2004). Effect of exercise training on endothelium-derived nitric oxide function in humans. Journal of Physiology, 561(1), 125. doi:10.1113/jphysiol.2004.068197

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harborne, J.B., & Grayer, R.J. (1988). The anthocyanins. In J.B. Harborne (Ed.), The Flavonoids (pp. 120). Boston, MA: Springer. doi:10.1007/978-1-4899-2913-6_1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellsten, Y., & Nyberg, M. (2016). Cardiovascular adaptations to exercise training. Comprehensive Physiology, 6(1), 132. doi:10.1002/cphy.c140080

    • Search Google Scholar
    • Export Citation
  • Jeacocke, N.A., & Burke, L.M. (2010). Methods to standardize dietary intake before performance testing dietary factors affecting outcomes of performance testing in sport-science research. International Journal of Sport Nutrition and Exercise Metabolism, 20, 87103. PubMed ID: 20479482 doi:10.1123/ijsnem.20.2.87

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, F., Roberts, S.J., Datla, S.R., & Dusting, G.J. (2006). NO modulates NADPH oxidase function via heme oxygenase-1 in human endothelial cells. Hypertension, 48(5), 950957. PubMed ID: 16982957 doi:10.1161/01.HYP.0000242336.58387.1f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, H., Takenami, E., Iwasaki-Kurashige, K., Osada, T., Katsumura, T., & Hamaoka, T. (2005). Effects of blackcurrant anthocyanin intake on peripheral muscle circulation during typing work in humans. European Journal of Applied Physiology, 94(1–2), 3645. PubMed ID: 15605279 doi:10.1007/s00421-004-1279-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazza, G., Kay, C.D., Cottrell, T., & Holub, B.J. (2002). Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. Journal of Agricultural and Food Chemistry, 50(26), 77317737. doi:10.1021/jf020690l

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montanari, S., Şahin, M.A., Lee, B.J., Blacker, S.D., & Willems, M.E.T. (2020). No effects of New Zealand Blackcurrant extract on physiological and performance responses in trained male cyclists undertaking repeated testing across a week period. Sports, 8(8), 114. doi:10.3390/sports8080114

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neveu, V., Perez-Jiménez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., … Scalbert, A. (2010). Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database: The Journal of Biological Databases and Curation, 2010, 19. doi:10.1093/database/bap024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickering, T.G., Hall, J.E., Appel, L.J., Falkner, B.E., Graves, J., Hill, M.N., … Roccella, E.J. (2005). Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans—A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on high blood pressure research. Circulation, 111(5), 697716. PubMed ID: 15699287 doi:10.1161/01.CIR.0000154900.76284.F6

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Mateos, A., Rendeiro, C., Bergillos-Meca, T., Tabatabaee, S., George, T.W., Heiss, C., & Spencer, J.P.E. (2013). Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: A randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. American Journal of Clinical Nutrition, 98(5), 11791191. PubMed ID: 24004888 doi:10.3945/ajcn.113.066639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sidery, M.B., & Macdonald, I.A. (1994). The effect of meal size on the cardiovascular responses to food ingestion. British Journal of Nutrition, 71(6), 835848. PubMed ID: 8031733 doi:10.1079/bjn19940190

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Wolferen, S.A., Van De Veerdonk, M.C., Mauritz, G.J., Jacobs, W., Marcus, J.T., Marques, K.M.J., … Vonk Noordegraaf, A. (2011). Clinically significant change in stroke volume in pulmonary hypertension. Chest, 139(5), 10031009. PubMed ID: 20864614 doi:10.1378/chest.10-1066

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldron, M., David Patterson, S., & Jeffries, O. (2018). Inter-day reliability of Finapres® cardiovascular measurements during rest and exercise. Sports Medicine International Open, 2(1), E9E15. doi:10.1055/s-0043-122081

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, M.C., Hendriks, W.H., Broomfield, A.M., & McGhie, T.K. (2009). Viscous food matrix influences absorption and excretion but not metabolism of blackcurrant anthocyanins in rats. Journal of Food Science, 74(1), H22H29. doi:10.1111/j.1750-3841.2008.00996.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willems, M.E.T., Myers, S.D., Gault, M.L., & Cook, M.D. (2015). Beneficial physiological effects with blackcurrant intake in endurance athletes. International Journal of Sport Nutrition and Exercise Metabolism, 25(4), 367374. PubMed ID: 25811286 doi:10.1123/ijsnem.2014-0233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J.W., Ikeda, K., & Yamori, Y. (2004). Upregulation of endothelial nitric oxide synthase by cyanidin-3-glucoside, a typical anthocyanin pigment. Hypertension, 44(2), 217222. PubMed ID: 15226277 doi:10.1161/01.HYP.0000135868.38343.c6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziberna, L., Tramer, F., Moze, S., Vrhovsek, U., Mattivi, F., & Passamonti, S. (2012). Transport and bioactivity of cyanidin 3-glucoside into the vascular endothelium. Free Radical Biology and Medicine, 52(9), 17501759. PubMed ID: 22387282 doi:10.1016/j.freeradbiomed.2012.02.027

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 629 629 141
Full Text Views 19 19 3
PDF Downloads 12 12 3