Quinine Ingestion During the Latter Stages of a 3,000-m Time Trial Fails to Improve Cycling Performance

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Naroa EtxebarriaUniversity of Canberra

Search for other papers by Naroa Etxebarria in
Current site
Google Scholar
PubMed
Close
*
,
Brad ClarkUniversity of Canberra

Search for other papers by Brad Clark in
Current site
Google Scholar
PubMed
Close
*
,
Megan L. RossAustralian Institute of Sport
Australian Catholic University

Search for other papers by Megan L. Ross in
Current site
Google Scholar
PubMed
Close
*
,
Timothy HuiConcentra

Search for other papers by Timothy Hui in
Current site
Google Scholar
PubMed
Close
*
,
Roland GoeckeUniversity of Canberra

Search for other papers by Roland Goecke in
Current site
Google Scholar
PubMed
Close
*
,
Ben RattrayUniversity of Canberra

Search for other papers by Ben Rattray in
Current site
Google Scholar
PubMed
Close
*
, and
Louise M. BurkeAustralian Institute of Sport
Australian Catholic University

Search for other papers by Louise M. Burke in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The ingestion of quinine, a bitter tastant, improves short-term (30 s) cycling performance, but it is unclear whether this effect can be integrated into the last effort of a longer race. The purpose of this study was to determine whether midtrial quinine ingestion improves 3,000-m cycling time-trial (TT) performance. Following three familiarization TTs, 12 well-trained male cyclists (mean ± SD: mass = 76.6 ± 9.2 kg, maximal aerobic power = 390 ± 50 W, maximal oxygen uptake = 4.7 ± 0.6 L/min) performed four experimental 3,000-m TTs on consecutive days. This double-blind, crossover design study had four randomized and counterbalanced conditions: (a) Quinine 1 (25-ml solution, 2 mM of quinine); (b) Quinine 2, replicate of Quinine 1; (c) a 25-ml sweet-tasting no-carbohydrate solution (Placebo); and (d) 25 ml of water (Control) consumed at the 1,850-m point of the TT. The participants completed a series of perceptual scales at the start and completion of all TTs, and the power output was monitored continuously throughout all trials. The power output for the last 1,000 m for all four conditions was similar: mean ± SD: Quinine 1 = 360 ± 63 W, Quinine 2 = 367 ± 63 W, Placebo = 364 ± 64 W, and Control = 367 ± 58 W. There were also no differences in the 3,000-m TT power output between conditions. The small perceptual differences between trials at specific 150-m splits were not explained by quinine intake. Ingesting 2 mM of quinine during the last stage of a 3,000-m TT did not improve cycling performance.

Etxebarria, Clark, and Rattray are with the Research Institute for Sport & Exercise, University of Canberra, Bruce, Australian Capital Territory, Australia. Ross and Burke are with the Australian Institute of Sport, Bruce, Australian Capital Territory, Australia; and the Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia. Hui is with Concentra, CA, USA. Goecke is with Human Centred Technology Research Centre, University of Canberra, Bruce, Australian Capital Territory, Australia.

Etxebarria (naroa.etxebarria@canberra.edu.au) is corresponding author.
  • Collapse
  • Expand
  • Best, R., McDonald, K., Hurst, P., & Pickering, C. (2020). Can taste be ergogenic? European Journal of Nutrition. Advance online publication. doi:10.1007/s00394-020-02274-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Borg, G., & Linderholm, H. (1967). Perceived exertion and pulse rate during graded exercise in various age groups. Journal of Internal Medicine, 181(S472), 194206. doi:10.1111/j.0954-6820.1967.tb12626.x

    • Search Google Scholar
    • Export Citation
  • Burke, L.M., & Maughan, R.J. (2015). The Governor has a sweet tooth—Mouth sensing of nutrients to enhance sports performance. European Journal of Sport Science, 15(1), 2940. PubMed ID: 25345670 doi:10.1080/17461391.2014.971880

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etxebarria, N., Ross, M.L., Clark, B., & Burke, L.M. (2019). Ingesting a bitter solution: The sweet touch to increasing short-term cycling performance. International Journal of Sports Physiology and Performance, 14(6), 727732. PubMed ID: 30427232 doi:10.1123/ijspp.2018-0554

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, C., deKoning, J.J., Hettinga, F., Lampen, J., Dodge, C., Bobbert, M., & Porcari, J.P. (2004). Effect of competitive distance on energy expenditure during simulated competition. International Journal of Sports Medicine, 25(3), 198204. PubMed ID: 15088244 doi:10.1055/s-2007-1025005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, G.K., Oberndorfer, T.A., Simmons, A.N., Paulus, M.P., Fudge, J.L., Yang, T.T., & Kaye, W.H. (2008). Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage, 39(4), 15591569. PubMed ID: 18096409 doi:10.1016/j.neuroimage.2007.10.061

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gam, S., Guelfi, K.J., & Fournier, P.A. (2014). Mouth rinsing and ingesting a bitter solution improves sprint cycling performance. Medicine & Science in Sports & Exercise, 46(8), 16481657. doi:10.1249/MSS.0000000000000271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gam, S., Guelfi, K.J., Hammond, G., & Fournier, P.A. (2015). Mouth rinsing and ingestion of a bitter-tasting solution increases corticomotor excitability in male competitive cyclists. European Journal of Applied Physiology, 115(10), 21992204. PubMed ID: 26049404 doi:10.1007/s00421-015-3200-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, L., Cerf-Ducastel, B., & Murphy, C. (2009). Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage, 44(3), 10081021. PubMed ID: 19007893 doi:10.1016/j.neuroimage.2008.09.044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, C.J., & Rejeski, J.W. (1989). Not what, but how one feels: The measurement of affect during exercise. Journal of Sport & Exercise Psychology, 11(3), 304317. doi:10.1123/jsep.11.3.304

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, H.S., Williams, E.L., Marchant, D., Sparks, S.A., Midgley, A.W., Bridge, C.A., & McNaughton, L. (2015). Distance-dependent association of affect with pacing strategy in cycling time trials. Medicine & Science in Sports & Exercise, 47(4), 825832. doi:10.1249/MSS.0000000000000475

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, A.E., Baldo, B.A., Pratt, W.E., & Will, M.J. (2005). Corticostriatal-hypothalamic circuitry and food motivation: Integration of energy, action and reward. Physiology & Behavior, 86(5), 773795. PubMed ID: 16289609 doi:10.1016/j.physbeh.2005.08.066

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A. (2014). Efficacy of 11-minute warm-up cycling routine. Presented at the Applied Physiology Conference Australian Institute of Sport, Canberra, ACT.

    • Search Google Scholar
    • Export Citation
  • Maxwell, B.F., Withers, R.T., Ilsley, A.H., Wakim, M.J., Woods, G.F., & Day, L. (1998). Dynamic calibration of mechanically, air- and electromagnetically braked cycle ergometers. European Journal of Applied Physiology and Occupational Physiology, 78(4), 346352. PubMed ID: 9754975 doi:10.1007/s004210050430

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, M.C., Murphy, T.J., & Motulsky, H.J. (2020). New author guidelines for displaying data and reporting data analysis and statistical methods in experimental biology. The Journal of Pharmacology and Experimental Therapeutics, 372(1), 136147. PubMed ID: 31884418 doi:10.1124/jpet.119.264143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robin, O., Rousmans, S., Dittmar, A., & Vernet-Maury, E. (2003). Gender influence on emotional responses to primary tastes. Physiology & Behavior, 78(3), 385393. PubMed ID: 12676273 doi:10.1016/S0031-9384(02)00981-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St Clair Gibson, A., Lambert, E.V., Rauch, L.H., Tucker, R., Baden, D.A., Foster, C., & Noakes, T.D. (2006). The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Medicine, 36(8), 705722. PubMed ID: 16869711 doi:10.2165/00007256-200636080-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, J., Lindsay, T.R., Lambert, M.I., Brown, J.C., & Noakes, T.D. (2012). Perceptual cues in the regulation of exercise performance—Physical sensations of exercise and awareness of effort interact as separate cues. British Journal of Sports Medicine, 46(1), 4248. PubMed ID: 21948124 doi:10.1136/bjsports-2011-090337

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2841 1035 28
Full Text Views 114 12 0
PDF Downloads 112 15 0