Factors Influencing Blood Alkalosis and Other Physiological Responses, Gastrointestinal Symptoms, and Exercise Performance Following Sodium Citrate Supplementation: A Review

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Charles S. Urwin Deakin University

Search for other papers by Charles S. Urwin in
Current site
Google Scholar
PubMed
Close
*
,
Rodney J. Snow Deakin University

Search for other papers by Rodney J. Snow in
Current site
Google Scholar
PubMed
Close
*
,
Dominique Condo Deakin University

Search for other papers by Dominique Condo in
Current site
Google Scholar
PubMed
Close
*
,
Rhiannon Snipe Deakin University

Search for other papers by Rhiannon Snipe in
Current site
Google Scholar
PubMed
Close
*
,
Glenn D. Wadley Deakin University

Search for other papers by Glenn D. Wadley in
Current site
Google Scholar
PubMed
Close
*
, and
Amelia J. Carr Deakin University

Search for other papers by Amelia J. Carr in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This review aimed to identify factors associated with (a) physiological responses, (b) gastrointestinal (GI) symptoms, and (c) exercise performance following sodium citrate supplementation. A literature search identified 33 articles. Observations of physiological responses and GI symptoms were categorized by dose (< 500, 500, and > 500 mg/kg body mass [BM]) and by timing of postingestion measurements (in minutes). Exercise performance following sodium citrate supplementation was compared with placebo using statistical significance, percentage change, and effect size. Performance observations were categorized by exercise duration (very short < 60 s, short ≥ 60 and ≤ 420 s, and longer > 420 s) and intensity (very high > 100% VO2max and high 90–100% VO2max). Ingestion of 500 mg/kg BM sodium citrate induced blood alkalosis more frequently than < 500 mg/kg BM, and with similar frequency to >500 mg/kg BM. The GI symptoms were minimized when a 500 mg/kg BM dose was ingested in capsules rather than in solution. Significant improvements in performance following sodium citrate supplementation were reported in all observations of short-duration and very high–intensity exercise with a 500 mg/kg BM dose. However, the efficacy of supplementation for short-duration, high-intensity exercise is less clear, given that only 25% of observations reported significant improvements in performance following sodium citrate supplementation. Based on the current literature, the authors recommend ingestion of 500 mg/kg BM sodium citrate in capsules to induce alkalosis and minimize GI symptoms. Supplementation was of most benefit to performance of short-duration exercise of very high intensity; further investigation is required to determine the importance of ingestion duration and timing.

Urwin, Condo, Snipe, and Carr are with the Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Victoria, Australia. Snow, Condo, and Wadley are with the Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Victoria, Australia.

Urwin (urwinc@deakin.edu.au) is corresponding author.
  • Collapse
  • Expand
  • Aedma, M., Timpmann, S., & Ööpik, V. (2015). Dietary sodium citrate supplementation does not improve upper-body anaerobic performance in trained wrestlers in simulated competition-day conditions. European Journal of Applied Physiology, 115(2), 387396. PubMed ID: 25327884 doi:10.1007/s00421-014-3025-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, P., & Saltin, B. (1985). Maximal perfusion of skeletal muscle in man. The Journal of Physiology, 366(1), 233249. doi:10.1113/jphysiol.1985.sp015794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, D., & Maughan, R.J. (1997). The effect of sodium citrate ingestion on the metabolic response to intense exercise following diet manipulation in man. Experimental Physiology: Translation and Integration, 82(6), 10411056. doi:10.1113/expphysiol.1997.sp004079

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, N., Campbell, I., Wilkerson, D., & Jones, A. (2006). Influence of acute plasma volume expansion on VO2 kinetics, VO2 peak, and performance during high-intensity cycle exercise. Journal of Applied Physiology, 101(3), 707714. PubMed ID: 16690793 doi:10.1152/japplphysiol.00154.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Billaut, F., & Bishop, D. (2009). Muscle fatigue in males and females during multiple-sprint exercise. Sports Medicine, 39(4), 257278. PubMed ID: 19317516 doi:10.2165/00007256-200939040-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogdanis, G., Nevill, M., Boobis, L., & Lakomy, H. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. Journal of Applied Physiology, 80(3), 876884. PubMed ID: 8964751 doi:10.1152/jappl.1996.80.3.876

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, R.M., Linnane, D.M., & Brooks, S. (2005). Alkalosis and the plasma catecholamine response to high-intensity exercise in man. Medicine & Science in Sports & Exercise, 37(2), 227233. PubMed ID: 15692317 doi:10.1249/01.MSS.0000152704.34531.B6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruton, J.D., Lännergren, J., & Westerblad, H. (1998). Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28°C. Journal of Applied Physiology, 85(2), 478483. PubMed ID: 9688723 doi:10.1152/jappl.1998.85.2.478

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cady, E., Elshove, H., Jones, D., & Moll, A. (1989). The metabolic causes of slow relaxation in fatigued human skeletal muscle. The Journal of Physiology, 418(1), 327337. PubMed ID: 2621622 doi:10.1113/jphysiol.1989.sp017843

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, A., Hopkins, W., & Gore, J. (2011). Effects of acute alkalosis and acidosis on performance: A meta-analysis. Sports Medicine, 41(10), 801814. PubMed ID: 21923200 doi:10.2165/11591440-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerullo, G., Parimbelli, M., Perna, S., Pecoraro, M., Liguori, G., Negro, M., & D’Antona, G. (2020). Sodium citrate supplementation: An updated revision and practical recommendations on exercise performance, hydration status and potential risks. Translational Sports Medicine, 3(6), 518525. doi:10.1002/tsm2.174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (2013). Statistical power analysis for the social sciences. New York, NY: Academic Press.

  • Costa, R., Miall, A., Khoo, A., Rauch, C., Snipe, R., Camões-Costa, V., & Gibson, P. (2017). Gut-training: The impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Applied Physiology, Nutrition, and Metabolism, 42(5), 547557. PubMed ID: 28177715 doi:10.1139/apnm-2016-0453

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, R., Snipe, R., Kitic, C., & Gibson, P. (2017). Systematic review: Exercise-induced gastrointestinal syndrome—implications for health and intestinal disease. Alimentary Pharmacology & Therapeutics, 46(3), 246265. PubMed ID: 28589631 doi:10.1111/apt.14157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, G., & Jenkins, D.G. (1994). The physiological and ventilatory responses to repeated 60 s sprints following sodium citrate ingestion. Journal of Sports Sciences, 12(5), 469475. PubMed ID: 7799476 doi:10.1080/02640419408732197

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coyle, E.F. (1999). Physiological determinants of endurance exercise performance. Journal of Science and Medicine in Sport, 2(3), 181189. PubMed ID: 10668757 doi:10.1016/S1440-2440(99)80172-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunha, V.C., Aoki, M.S., Zourdos, M.C., Gomes, R.V., Barbosa, W.P., Massa, M., & Capitani, C.D. (2019). Sodium citrate supplementation enhances tennis skill performance: A crossover, placebo-controlled, double blind study. Journal of the International Society of Sports Nutrition, 16(1), 32. PubMed ID: 31370896 doi:10.1186/s12970-019-0297-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Currell, K., & Jeukendrup, A.E. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports Medicine, 38(4), 297316. PubMed ID: 18348590 doi:10.2165/00007256-200838040-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drozdowski, L., & Thomson, A. (2006). Intestinal sugar transport. World Journal of Gastroenterology, 12(11), 16571670. PubMed ID: 16586532 doi:10.3748/wjg.v12.i11.1657

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez-Castanys, B.F., Fernández, M., & Garcia, J.A. (2002). The effect of sodium citrate intake on anaerobic performance in normoxia and after sudden ascent to a moderate altitude. The Journal of Sports Medicine and Physical Fitness, 42(2), 179185. PubMed ID: 12032413

    • Search Google Scholar
    • Export Citation
  • Fitts, R. (2016). The role of acidosis in fatigue: Pro perspective. Medicine & Science in Sports & Exercise, 48(11), 23352338. PubMed ID: 27755382 doi:10.1249/MSS.0000000000001043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flueck, J., Mettler, S., & Perret, C. (2014). Influence of caffeine and sodium citrate ingestion on 1,500-m exercise performance in elite wheelchair athletes: A pilot study. International Journal of Sport Nutrition and Exercise Metabolism, 24(3), 296304. PubMed ID: 24281893 doi:10.1123/ijsnem.2013-0127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garland, P., Randle, P., & Newsholme, E. (1963). Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes, and starvation. Nature, 200(4902), 169170. PubMed ID: 14073034 doi:10.1038/200169a0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granger, J.P. (1998). Regulation of extracellular fluid volume by integrated control of sodium excretion. Advances in Physiology Education, 275(6), S157S168. doi:10.1152/advances.1998.275.6.S157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, M. (2015). Exercise, muscle, and CHO metabolism. Scandinavian Journal of Medicine & Science in Sports, 25(1), 2933. PubMed ID: 26589114 doi:10.1111/sms.12607

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausswirth, C., Bigard, A., Lepers, R., Berthelot, M., & Guezennec, C. (1995). Sodium citrate ingestion and muscle performance in acute hypobaric hypoxia. European Journal of Applied Physiology and Occupational Physiology, 71(4), 362368. PubMed ID: 8549581 doi:10.1007/BF00240418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heibel, A., Perim, P., Oliveira, L., McNaughton, L., & Saunders, B. (2018). Time to optimize supplementation: Modifying factors influencing the individual responses to extracellular buffering agents. Frontiers in Nutrition, 5(1), 35. PubMed ID: 29868599 doi:10.3389/fnut.2018.00035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilton, N., Leach, N., Sparks, A., Gough, L., Craig, M., Deb, S., & McNaughton, L. (2019). A novel ingestion strategy for sodium bicarbonate supplementation in a delayed-release form: A randomised crossover study in trained males. Sports Medicine Open, 5(1), 4. PubMed ID: 30680463 doi:10.1186/s40798-019-0177-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, M., & Fogard, K. (2011). Factors related to successful completion of a 161-km ultramarathon. International Journal of Sports Physiology and Performance, 6(1), 2537. PubMed ID: 21487147 doi:10.1123/ijspp.6.1.25

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollidge-Horvat, M. (1999). Effect of induced metabolic acidosis on human skeletal muscle metabolism during exercise. American Journal of Physiology-Endocrinology and Metabolism, 277(4), E647E658. PubMed ID: 10516124 doi:10.1152/ajpendo.1999.277.4.E647

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horswill, C. (1995). Effects of bicarbonate, citrate, and phosphate loading on performance. International Journal of Sport Nutrition and Exercise Metabolism, 5(Suppl.), S111S119. PubMed ID: 7550253 doi:10.1123/ijsn.5.s1.s111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ibanez, J., Pullinen, T., Gorostiaga, E., Postigo, A., & Mero, A. (1995). Blood lactate and ammonia in short-term anaerobic work following induced alkalosis. The Journal of Sports Medicine and Physical Fitness, 35(3), 187. PubMed ID: 8775645

    • Search Google Scholar
    • Export Citation
  • Jain, P., Jain, P., Tandon, H.C., & Babbar, R. (2003). Effect of sodium citrate ingestion on oxygen debt & exercise endurance during supramaximal exercise. Indian Journal of Medical Research, 118, 4246. PubMed ID: 14748465

    • Search Google Scholar
    • Export Citation
  • Johnson, W.R., & Black, D.H. (1953). Comparison of effects of certain blood alkalinizers and glucose upon competitive endurance performance. Journal of Applied Physiology, 5(10), 577578. PubMed ID: 13044733 doi:10.1152/jappl.1953.5.10.577

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, B., & Kenward, M.G. (2014). Design and analysis of cross-over trials. Boca Raton, FL: CRC Press.

  • Karatzaferi, C., de Haan, A., Ferguson, R., van Mechelen, W., & Sargeant, A. (2001). Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. European Journal of Physiology, 442(3), 467474. PubMed ID: 11484780 doi:10.1007/s004240100552

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiela, P., & Ghishan, F. (2016). Physiology of intestinal absorption and secretion. Clinical Gastroenterology, 30(2), 145159. PubMed ID: 27086882 doi:10.1016/j.bpg.2016.02.007

    • Search Google Scholar
    • Export Citation
  • Kiela, P., & Ghishan, F. (2018). Na+/H+ exchange in mammalian digestive tract. In H.M. Said (Ed.), Physiology of the gastrointestinal tract (6th ed., pp. 12731316). London, UK: Academic Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowalchuk, J., Maltais, S., Yamaji, K., & Hughson, R. (1989). The effect of sodium citrate loading on exercise performance, acid–base balance and metabolism. European Journal of Applied Physiology and Occupational Physiology, 58(8), 858864. PubMed ID: 2767067 doi:10.1007/BF02332219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumstát, M., Hlinský, T., Struhár, I., & Thomas, A. (2018). Does sodium citrate cause the same ergogenic effect as sodium bicarbonate on swimming performance? Journal of Human Kinetics, 65(1), 8998. PubMed ID: 30687422 doi:10.2478/hukin-2018-0022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurtz, I., Kraut, J., Ornekian, V., & Nguyen, M. (2008). Acid–base analysis: A critique of the Stewart and bicarbonate-centered approaches. American Journal of Physiology-Renal Physiology, 294(5), F1009F1031. PubMed ID: 18184741 doi:10.1152/ajprenal.00475.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(1), 863. PubMed ID: 24324449 doi:10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lancha Junior, A.H., de Salles Painelli, V., Saunders, B., & Artioli, G.G. (2015). Nutritional strategies to modulate intracellular and extracellular buffering capacity during high-intensity exercise. Sports Medicine, 45(Suppl. 1), 7181. PubMed ID: 26553493 doi:10.1007/s40279-015-0397-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linderman, J., & Fahey, T. (1991). Sodium bicarbonate ingestion and exercise performance. Sports Medicine, 11(2), 7177. PubMed ID: 1850166 doi:10.2165/00007256-199111020-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linossier, M., Dormis, D., Bregere, P., Geyssant, A., & Denis, C. (1997). Effect of sodium citrate on performance and metabolism of human skeletal muscle during supramaximal cycling exercise. European Journal of Applied Physiology and Occupational Physiology, 76(1), 4854. PubMed ID: 9243169 doi:10.1007/s004210050211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martins, A., Artioli, G., & Franchini, E. (2010). Sodium citrate ingestion increases glycolytic activity but does not enhance 2000 m rowing performance. Journal of Human Sport and Exercise, 5(3), 411417. doi:10.4100/jhse.2010.53.11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J., Burke, L.M., Dvorak, J., Larson-Meyer, D.E., Peeling, P., Phillips, S.M., … Engebretsen, L.. (2018). IOC consensus statement: Dietary supplements and the high-performance athlete. British Journal of Sports Medicine, 52(7), 439455. PubMed ID: 29540367 doi:10.1136/bjsports-2018-099027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J., King, D.S., & Lea, T. (2004). Dietary supplements. Journal of Sports Sciences, 22(1), 95113. PubMed ID: 14971436 doi:10.1080/0264041031000140581

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNaughton, L. (1990). Sodium citrate and anaerobic performance: Implications of dosage. European Journal of Applied Physiology and Occupational Physiology, 61(5), 392397. PubMed ID: 2079058 doi:10.1007/BF00236058

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNaughton, L. (1992). Sodium bicarbonate ingestion and its effects on anaerobic exercise of various durations. Journal of Sports Sciences, 10(5), 425435. PubMed ID: 1331494 doi:10.1080/02640419208729941

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNaughton, L., & Cedaro, R. (1992). Sodium citrate ingestion and its effects on maximal anaerobic exercise of different durations. European Journal of Applied Physiology and Occupational Physiology, 64(1), 3641. PubMed ID: 1735409 doi:10.1007/BF00376437

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medbø, J., & Sejersted, O. (1990). Plasma potassium changes with high intensity exercise. The Journal of Physiology, 421(1), 105122. PubMed ID: 2348388 doi:10.1113/jphysiol.1990.sp017935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T.H., Abraham, G., Wing, S., Magder, S.A., Cosio, M.G., Deschamps, A., & Marliss, E.B. (1990). Intravenous bicarbonate and sodium chloride both prolong endurance during intense cycle ergometer exercise. The American Journal of the Medical Sciences, 300(2), 8897. PubMed ID: 2403123 doi:10.1097/00000441-199008000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264269. PubMed ID: 19622511 doi:10.7326/0003-4819-151-4-200908180-00135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ööpik, V., Saaremets, I., Medijainen, L., Karelson, K., Janson, T., & Timpmann, S. (2003). Effects of sodium citrate ingestion before exercise on endurance performance in well trained college runners. British Journal of Sports Medicine, 37(6), 485489. PubMed ID: 14665584 doi:10.1136/bjsm.37.6.485

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ööpik, V., Saaremets, I., Timpmann, S., Medijainen, L., & Karelson, K. (2004). Effects of acute ingestion of sodium citrate on metabolism and 5-km running performance: A field study. Canadian Journal of Applied Physiology, 29(6), 691703. PubMed ID: 15630143 doi:10.1139/h04-044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ööpik, V., Timpmann, S., Hackney, A.C., Kadak, K., Medijainen, L., & Karelson, K. (2010). Ingestion of sodium citrate suppresses aldosterone level in blood at rest and during exercise. Applied Physiology, Nutrition, and Metabolism, 35(3), 278285. PubMed ID: 20555371 doi:10.1139/H10-018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ööpik, V., Timpmann, S., Kadak, K., Medijainen, L., & Karelson, K. (2008). The effects of sodium citrate ingestion on metabolism and 1500-m racing time in trained female runners. Journal of Sports Science & Medicine, 7(1), 125131. PubMed ID: 24150144

    • Search Google Scholar
    • Export Citation
  • Pajor, A.M. (1999). Sodium-coupled transporters for Krebs cycle intermediates. Annual Review of Physiology, 61(1), 663682. PubMed ID: 10099705 doi:10.1146/annurev.physiol.61.1.663

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pajor, A.M. (2014). Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. European Journal of Physiology, 466(1), 119130. PubMed ID: 24114175 doi:10.1007/s00424-013-1369-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parry-Billings, M., & MacLaren, D.P.M. (1986). The effect of sodium bicarbonate and sodium citrate ingestion on anaerobic power during intermittent exercise. European Journal of Applied Physiology and Occupational Physiology, 55(5), 524529. PubMed ID: 3021445 doi:10.1007/BF00421648

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Binnie, M., Goods, P., Sim, M., & Burke, L. (2018). Evidence-based supplements for the enhancement of athletic performance. International Journal of Sport Nutrition and Exercise Metabolism, 28(2), 178187. PubMed ID: 29465269 doi:10.1123/ijsnem.2017-0343

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, S., & Spriet, L. (1995). Skeletal muscle phosphofructokinase activity examined under physiological conditions in vitro. Journal of Applied Physiology, 78(5), 18531858. PubMed ID: 7649922 doi:10.1152/jappl.1995.78.5.1853

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potteiger, J., Webster, M., Nickel, C., Haub, M., & Palmer, R. (1996). The effects of buffer ingestion on metabolic factors related to distance running performance. European Journal of Applied Physiology and Occupational Physiology, 72(4), 365371. PubMed ID: 8851907 doi:10.1007/BF00599698

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pribic, T., Hernandez, L., Nieto, A., Malagelada, C., Accarino, A., & Azpiroz, F. (2018). Effects of meal palatability on postprandial sensations. Neurogastroenterology & Motility, 30(2), e13248. PubMed ID: 29105893 doi:10.1111/nmo.13248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renata, C., Fabio, V., Angela, B., & Sergio, S. (2003). Citrate and mineral metabolism: Kidney stones and bone disease. Frontiers in Bioscience, 8(6), s1084s1106. PubMed ID: 12957820 doi:10.2741/1119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Requena, B., Zabala, M., Padial, P., & Feriche, B. (2005). Sodium bicarbonate and sodium citrate: Ergogenic aids? The Journal of Strength and Conditioning Research, 19(1), 213224. PubMed ID: 15705037 doi:10.1519/13733.1

    • Search Google Scholar
    • Export Citation
  • Russell, C., Papadopoulos, E., Mezil, Y., Wells, G., Plyley, M., Greenway, M., & Klentrou, P. (2014). Acute versus chronic supplementation of sodium citrate on 200 m performance in adolescent swimmers. Journal of the International Society of Sports Nutrition, 11, 26. PubMed ID: 24944546 doi:10.1186/1550-2783-11-26

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schabort, E., Wilson, G., & Noakes, T. (2000). Dose-related elevations in venous pH with citrate ingestion do not alter 40-km cycling time-trial performance. European Journal of Applied Physiology, 83(4), 320327. PubMed ID: 11138570 doi:10.1007/s004210000264

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, M., & Astorino, T. (2013). A systematic review of the efficacy of ergogenic aids for improving running performance. The Journal of Strength and Conditioning Research, 27(6), 16991707. PubMed ID: 22890496 doi:10.1519/JSC.0b013e31826cad24

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., … Stewart, L.A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. British Medical Journal, 350(1), g7647. PubMed ID: 25555855 doi:10.1136/bmj.g7647

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shave, R., Whyte, G., Siemann, A.R.T., & Doggart, L. (2001). The effects of sodium citrate ingestion on 3,000-meter time-trial performance. The Journal of Strength & Conditioning Research, 15(2), 230234. PubMed ID: 11710409

    • Search Google Scholar
    • Export Citation
  • Simpson, F. (1988). Sodium intake, body sodium, and sodium excretion. The Lancet, 332(8601), 2529. doi:10.1016/S0140-6736(88)92954-6

  • Spriet, L. (1991). Phosphofructokinase activity and acidosis during short-term tetanic contractions. Canadian Journal of Physiology and Pharmacology, 69(2), 298304. PubMed ID: 1829021 doi:10.1139/y91-046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, P. (1983). Modern quantitative acid–base chemistry. Canadian Journal of Physiology and Pharmacology, 61(12), 14441461. PubMed ID: 6423247 doi:10.1139/y83-207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Street, D., Nielsen, J., Bangsbo, J., & Juel, C. (2005). Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. The Journal of Physiology, 566(2), 481489. PubMed ID: 15860529 doi:10.1113/jphysiol.2005.086801

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiryaki, G., & Atterbom, H. (1995). The effects of sodium bicarbonate and sodium citrate on 600 m running time of trained females. The Journal of Sports Medicine and Physical Fitness, 35(3), 194198. PubMed ID: 8775646

    • Search Google Scholar
    • Export Citation
  • Urwin, C.S., Dwyer, D., & Carr, A.J. (2016). Induced alkalosis and gastrointestinal symptoms after sodium citrate ingestion: A dose–response investigation. International Journal of Sport Nutrition and Exercise Metabolism, 26(6), 542548. PubMed ID: 27098485 doi:10.1123/ijsnem.2015-0336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urwin, C.S., Snow, R.J., Orellana, L., Condo, D., Wadley, G.D., & Carr, A.J. (2019). Sodium citrate ingestion protocol impacts induced alkalosis, gastrointestinal symptoms, and palatability. Physiological Reports, 7(19), e14216. PubMed ID: 31602822 doi:10.14814/phy2.14216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaher, I., Timpmann, S., Aedma, M., & Ööpik, V. (2015). Impact of acute sodium citrate ingestion on endurance running performance in a warm environment. European Journal of Applied Physiology, 115(4), 813823. PubMed ID: 25471273 doi:10.1007/s00421-014-3068-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Montfoort, M., Van Dieren, L., Hopkins, W., & Shearman, J. (2004). Effects of ingestion of bicarbonate, citrate, lactate, and chloride on sprint running. Medicine & Science in Sports & Exercise, 36(7), 12391243. PubMed ID: 15235332 doi:10.1249/01.MSS.0000132378.73975.25

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Someren, K., Fulcher, K., McCarthy, J., Moore, J., Horgan, G., & Langford, R. (1998). An investigation into the effects of sodium citrate ingestion on high-intensity exercise performance. International Journal of Sport Nutrition and Exercise Metabolism, 8(4), 356363. doi:10.1123/ijsn.8.4.356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerblad, H. (2016). Acidosis is not a significant cause of skeletal muscle fatigue. Medicine & Science in Sports & Exercise, 48(11), 23392342. PubMed ID: 27755383 doi:10.1249/MSS.0000000000001044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, P., & Ingraham, S. (2015). Glucose–fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose‐only. Scandinavian Journal of Medicine & Science in Sports, 25(6), e613e620. PubMed ID: 25556817 doi:10.1111/sms.12386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolffram, S., Unternährer, R., Grenacher, B., & Scharrer, E. (1994). Transport of citrate across the brush border and basolateral membrane of rat small intestine. Comparative Biochemistry and Physiology, 109(1), 3952. PubMed ID: 8076452 doi:10.1016/0300-9629(94)90310-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zacchia, M., & Preisig, P. (2010). Low urinary citrate: An overview. Journal of Nephrology, 23(Suppl. 16), S49S56. PubMed ID: 21170889

    • Search Google Scholar
    • Export Citation
  • Zuckerman, J., & Assimos, D. (2009). Hypocitraturia: Pathophysiology and medical management. Reviews in Urology, 11(3), 134144. PubMed ID: 19918339

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3822 1209 58
Full Text Views 155 18 0
PDF Downloads 174 21 1