Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

This study explored lifestyle and biological determinants of peak fat oxidation (PFO) during cycle ergometry, using duplicate measures to account for day-to-day variation. Seventy-three healthy adults (age range: 19–63 years; peak oxygen consumption [V˙O2peak]:42.4[10.1]ml·kgBM1·min1; n = 32 women]) completed trials 7–28 days apart that assessed resting metabolic rate, a resting venous blood sample, and PFO by indirect calorimetry during an incremental cycling test. Habitual physical activity (combined heart rate accelerometer) and dietary intake (weighed record) were assessed before the first trial. Body composition was assessed 2–7 days after the second identical trial by dual-energy X-ray absorptiometry scan. Multiple linear regressions were performed to identify determinants of PFO (mean of two cycle tests). A total variance of 79% in absolute PFO (g·min−1) was explained with positive coefficients for V˙O2peak (strongest predictor), FATmax (i.e the % of V˙O2peak that PFO occurred at), and resting fat oxidation rate (g·min−1), and negative coefficients for body fat mass (kg) and habitual physical activity level. When expressed relative to fat-free mass, 64% of variance in PFO was explained: positive coefficients for FATmax (strongest predictor), V˙O2peak, and resting fat oxidation rate, and negative coefficients for male sex and fat mass. This duplicate design revealed that biological and lifestyle factors explain a large proportion of variance in PFO during incremental cycling. After accounting for day-to-day variation in PFO, V˙O2peak and FATmax were strong and consistent predictors of PFO.

The authors are with the Department for Health, University of Bath, Bath, United Kingdom.

Gonzalez (J.T.Gonzalez@bath.ac.uk) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 223 KB)
    • Supplementary Material 2 (PDF 185 KB)
  • Achten, J., Gleeson, M., & Jeukendrup, A.E. (2002). Determination of the exercise intensity that elicits maximal fat oxidation. Medicine & Science in Sports & Exercise, 34(1), 9297. PubMed ID: 11782653 doi:10.1097/00005768-200201000-00015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaro-Gahete, F.J., Sanchez-Delgado, G., & Ruiz, J.R. (2018). Commentary: Contextualising maximal fat oxidation during exercise: Determinants and normative values. Frontiers in Physiology, 9, 14601460. PubMed ID: 30405428 doi:10.3389/fphys.2018.01460

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Astorino, T.A., & Schubert, M.M. (2017). Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). European Journal of Applied Physiology, 118(1), 5163. PubMed ID: 29124325 doi:10.1007/s00421-017-3756-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P.C., & Steyerberg, E.W. (2015). The number of subjects per variable required in linear regression analyses. Journal of Clinical Epidemiology, 68(6), 627636. PubMed ID: 25704724 doi:10.1016/j.jclinepi.2014.12.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, G.A., Butte, N.F., Rand, W.M., Flatt, J., & Caballero, B. (2004). Chronicle of the Institute of Medicine physical activity recommendation: How a physical activity recommendation came to be among dietary recommendations. American Journal of Clinical Nutrition, 79(5), 921S930S. doi:10.1093/ajcn/79.5.921S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M. (2015). Re-examining high-fat diets for sports performance: Did we call the 'nail in the coffin’ too soon? Sports Medicine, 45(Suppl. 1), S33S49. doi:10.1007/s40279-015-0393-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrzanowski-Smith, O.J., Edinburgh, R.M., Thomas, M.P., Haralabidis, N., Williams, S., Betts, J.A., & Gonzalez, J.T. (2020). The day-to-day reliability of peak fat oxidation and FATMAX. European Journal of Applied Physiology, 120(8), 17451759. doi:10.1007/s00421-020-04397-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrzanowski-Smith, O.J., Edinburgh, R.M., Thomas, M.P., Hengist, A., Williams, S., Betts, J.A., & Gonzalez, J.T. (2020). Dataset biological sex and aerobic capacity are key determinants of peak fat oxidation rates during exercise. Bath, UK: University of Bath Research Data Archive. doi:10.15125/BATH-00611

    • Search Google Scholar
    • Export Citation
  • Croci, I., Borrani, F., Byrne, N.M., Wood, R.E., Hickman, I.J., Chenevière, X., & Malatesta, D. (2014). Reproducibility of fat max and fat oxidation rates during exercise in recreationally trained males. PLoS One, 9(6), e97930. PubMed ID: 24886715 doi:10.1371/journal.pone.0097930

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Croci, I., Hickman, I.J., Wood, R.E., Borrani, F., Macdonald, G.A., & Byrne, N. (2014). Fat oxidation over a range of exercise intensities: Fitness versus fatness. Applied Physiology, Nutrition, and Metabolism, 39(12), 13521359. PubMed ID: 25356842 doi:10.1139/apnm-2014-0144

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, A.P. (2017). Discovering statistics using IBM SPSS statistics (5th ed.). London, UK: SAGE.

  • Fletcher, G., Eves, F.F., Glover, E.I., Robinson, S.L., Vernooij, C.A., Thompson, J.L., & Wallis, G.A. (2017). Dietary intake is independently associated with the maximal capacity for fat oxidation during exercise. American Journal of Clinical Nutrition, 105(4), 864872. doi:10.3945/ajcn.116.133520

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frandsen, J., Pistoljevic, N., Quesada, J.P., Amaro-Gahete, F.J., Ritz, R., Larsen, S., … Helge, J.W. (2020). Menstrual cycle phase does not affect whole body peak fat oxidation rate during a graded exercise test. Journal of Applied Physiology, 128(3), 681687. PubMed ID: 32078462 doi:10.1152/japplphysiol.00774.2019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frandsen, J., Vest, S.D., Ritz, C., Larsen, S., Dela, F., & Helge, J.W. (2019). Plasma free fatty acid concentration is closely tied to whole body peak fat oxidation rate during repeated exercise. Journal of Applied Physiology, 126(6), 15631571. PubMed ID: 30844337 doi:10.1152/japplphysiol.00995.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frayn, K.N. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 55(2), 628634. doi:10.1152/jappl.1983.55.2.628

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goedecke, J.H., Gibson, A.S.C., Grobler, L., Collins, M., Noakes, T.D., & Lambert, E.V. (2000). Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. American Journal of Physiology-Endocrinology and Metabolism, 279(6), E1325E1334. PubMed ID: 11093921 doi:10.1152/ajpendo.2000.279.6.E1325

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, L.M.L., Moran, C.N., Milne, G.R., Wilson, J., MacFarlane, N.G., Forouhi, N.G., … Gill, J.M.R. (2010). Fat oxidation, fitness and skeletal muscle expression of oxidative/lipid metabolism genes in South Asians: Implications for insulin resistance? PLoS One, 5(12), e14197. PubMed ID: 21152018 doi:10.1371/journal.pone.0014197

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, M., Hawley, J.A., & Jeukendrup, A. (2004). Pre-exercise carbohydrate and fat ingestion: Effects on metabolism and performance. Journal of Sports Sciences, 22(1), 3138. PubMed ID: 14971431 doi:10.1080/0264041031000140536

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haufe, S., Engeli, S., Budziarek, P., Utz, W., Schulz-Menger, J., Hermsdorf, M., … Jordan, J. (2010). Determinants of exercise-induced fat oxidation in obese women and men. Hormone and Metabolic Research, 42(3), 215221. PubMed ID: 19937568 doi:10.1055/s-0029-1242745

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helge, J.W., Richter, E.A., & Kiens, B. (1996). Interaction of training and diet on metabolism and endurance during exercise in man. Journal of Physiology, 492 (1), 293306. doi:10.1113/jphysiol.1996.sp021309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isacco, L., Thivel, D., Duclos, M., Aucouturier, J., & Boisseau, N. (2014). Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women. Diabetes & Metabolism, 40(3), 215219. PubMed ID: 24698815 doi:10.1016/j.diabet.2014.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanzi, S., Codecasa, F., Cornacchia, M., Maestrini, S., Salvadori, A., Brunani, A., & Malatesta, D. (2014). Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults. PLoS One, 9(2), e88707. PubMed ID: 24523934 doi:10.1371/journal.pone.0088707

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maunder, E., Plews, D.L.J., & Kilding, A.E. (2018). Contextualising maximal fat oxidation during exercise: Determinants and normative values. Frontiers in Physiology, 9, 599. PubMed ID: 29875697 doi:10.3389/fphys.2018.00599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randell, R.K., Rollo, I., Roberts, T.J., Dalrymple, K.J., Jeukendrup, A.E., & Carter, J.M. (2017). Maximal fat oxidation rates in an athletic population. Medicine & Science in Sports & Exercise, 49(1), 133140. PubMed ID: 27580144 doi:10.1249/MSS.0000000000001084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, S.L., Chambers, E.S., Fletcher, G., & Wallis, G.A. (2016). Lipolytic markers, insulin and resting fat oxidation are associated with maximal fat oxidation. International Journal of Sports Medicine, 37(8), 607613. PubMed ID: 27116342 doi:10.1055/s-0042-100291

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romijn, J.A., Coyle, E.F., Sidossis, L.S., Gastaldelli, A., Horowitz, J.F., Endert, E., & Wolfe, R.R. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology, 265(3, Pt. 1), E380E391. PubMed ID: 8214047

    • Search Google Scholar
    • Export Citation
  • Rosenkilde, M., Nordby, P., Nielsen, L.B., Stallknecht, B.M., & Helge, J.W. (2010). Fat oxidation at rest predicts peak fat oxidation during exercise and metabolic phenotype in overweight men. International Journal of Obesity, 34(5), 871877. PubMed ID: 20157319 doi:10.1038/ijo.2010.11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schutz, Y. (2000). Role of substrate utilization and thermogenesis on body-weight control with particular reference to alcohol. Proceedings of the Nutrition Society, 59(4), 511517. PubMed ID: 11115785 doi:10.1017/S0029665100000744

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, C.S., Swinton, C., Morales-Scholz, M.G., McRae, N., Erftemeyer, T., Aldous, A., … Howlett, K.F. (2020). Impact of exercise training status on the fiber type-specific abundance of proteins regulating intramuscular lipid metabolism. Journal of Applied Physiology, 128(2), 379389. PubMed ID: 31917629 doi:10.1152/japplphysiol.00797.2019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stults-Kolehmainen, M.A., Stanforth, P.R., Bartholomew, J.B., Lu, T., Abolt, C.J., & Sinha, R. (2013). DXA estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men. Nutrition & Diabetes, 3(3), e64e64. doi:10.1038/nutd.2013.5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarnopolsky, M.A. (2008). Sex differences in exercise metabolism and the role of 17-beta estradiol. Medicine & Science in Sports & Exercise, 40(4), 648654. PubMed ID: 18317381 doi:10.1249/MSS.0b013e31816212ff

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, L.J., Greenhaff, P.L., Constantin-Teodosiu, D., Saris, W.H., & Wagenmakers, A.J. (2001). The effects of increasing exercise intensity on muscle fuel utilisation in humans. Journal of Physiology, 536(Pt. 1), 295. PubMed ID: 11579177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venables, M.C., Achten, J., & Jeukendrup, A.E. (2005). Determinants of fat oxidation during exercise in healthy men and women: A cross-sectional study. Journal of Applied Physiology, 98(1), 160167. PubMed ID: 15333616 doi:10.1152/japplphysiol.00662.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerterp, K.R. (2004). Diet induced thermogenesis. Nutrition & Metabolism, 1(1), 5. PubMed ID: 15507147 doi:10.1186/1743-7075-1-5

All Time Past Year Past 30 Days
Abstract Views 147 147 147
Full Text Views 14 14 14
PDF Downloads 7 7 7