Cold-Water Effects on Energy Balance in Healthy Women During Aqua-Cycling

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Clermont Auvergne University
  • 2 Auvergne Research Center for Human Nutrition (CRNH)
  • 3 University of Leeds
  • 4 Pennington Biomedical Research Center
  • 5 Clermont-Ferrand University Hospital
  • 6 G. Montpied Hospital
  • 7 INRA, UMR 1019
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Background: While the popularity of aquatic physical activities continues to grow among women, the effects on energy expenditure (EE) and appetite control remain unknown. The objective of this study was to examine the effect of water temperature during aqua-cycling session on EE, rate of perceived exertion, energy intake, appetite sensations, and food reward in healthy premenopausal women. Methods: Participants completed three experimental sessions, in the postprandial condition, in a randomized order: a land control session (CON), an aqua-cycling session in 18 °C (EXO18), and an aqua-cycling session in 27 °C (EXO27). The EE, food intake, appetite sensations, and food reward were investigated for each condition. Results: EXO18 induced a significant increase in EE (p < .001) and oxygen consumption (p < .01) compared with EXO27. The carbohydrate oxidation was higher in EXO18 session compared with EXO27 and CON (p < .05 and p < .001, respectively). While fat oxidation was higher in exercise sessions compared with CONT (p < .01), no difference was observed between EXO18 and EXO27. Exercise sessions did not alter absolute energy intake session but induced a decrease in relative energy intake (p < .001) and in hunger, desire to eat, and prospective food consumption compared with CON (p < .001). The authors also show here that cold-water exposure can increase EE while rate of perceived exertion is lower at the end of exercise session compared with same exercise at 27 °C (p < .05).Conclusion: An exposure to a moderately cold-water during aqua-cycling is an efficient strategy to promote increased EE and decreased hunger, which may be effective for energy balance management in healthy premenopausal women.

Metz, Isacco, and Thivel are with the Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, Clermont-Ferrand, France; and the Auvergne Research Center for Human Nutrition (CRNH), Clermont-Ferrand, France. Beaulieu is with the School of Psychology, University of Leeds, Leeds, United Kingdom. Fearnbach is with the Pennington Biomedical Research Center, Baton Rouge, LA, USA. Pereira is with the Biostatistics Unit (DRCI), Clermont-Ferrand University Hospital, Clermont-Ferrand, France. Duclos is with the Department of Sport Medicine and Functional Explorations, Clermont-Ferrand University Hospital, G. Montpied Hospital, Clermont-Ferrand, France; and the INRA, UMR 1019, Clermont-Ferrand, France.

Metz (Lore.metz@uca.fr) is corresponding author.
  • Alberton, C.L., Antunes, A.H., Beilke, D.D., Pinto, S.S., Kanitz, A.C., Tartaruga, M.P., & Martins Kruel, L.F. (2013a). Maximal and ventilatory thresholds of oxygen uptake and rating of perceived exertion responses to water aerobic exercises. The Journal of Strength and Conditioning Research, 27(7), 18971903. PubMed ID: 23037612 doi:10.1519/jsc.0b013e3182736e47

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alberton, C.L., Kanitz, A.C., Pinto, S.S., Antunes, A.H., Finatto, P., Cadore, E.L., & Kruel, L.F. (2013b). Determining the anaerobic threshold in water aerobic exercises: A comparison between the heart rate deflection point and the ventilatory method. Journal of Sports Medicine and Physical Fitness, 53(4), 358367. PubMed ID: 23828283

    • Search Google Scholar
    • Export Citation
  • Ayme, K., Gavarry, O., Rossi, P., Desruelle, A.V., Regnard, J., & Boussuges, A. (2014a). Effect of head-out water immersion on vascular function in healthy subjects. Applied Physiology, Nutrition, and Metabolism, 39(4), 425431. PubMed ID: 24669983 doi:10.1139/apnm-2013-0153

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayme, K., Gavarry, O., Rossi, P., Guieu, R., & Boussuges, A. (2014b). Changes in cardio-vascular function after a single bout of exercise performed on land or in water: A comparative study. International Journal of Cardiology, 176(3), 13771378. PubMed ID: 25156859 doi:10.1016/j.ijcard.2014.07.271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayme, K., Rossi, P., Gavarry, O., Chaumet, G., & Boussuges, A. (2015). Cardiorespiratory alterations induced by low-intensity exercise performed in water or on land. Applied Physiology, Nutrition, and Metabolism, 40(4), 309315. PubMed ID: 25761733 doi:10.1139/apnm-2014-0264

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbosa, T.M., Garrido, M.F., & Bragada, J. (2007). Physiological adaptations to head-out aquatic exercises with different levels of body immersion. The Journal of Strength and Conditioning Research, 21(4), 12551259. PubMed ID: 18076241 doi:10.1519/r-20896.1

    • Search Google Scholar
    • Export Citation
  • Barbosa, T.M., Marinho, D.A., Reis, V.M., Silva, A.J., & Bragada, J.A. (2009). Physiological assessment of head-out aquatic exercises in healthy subjects: A qualitative review. Journal of Sports Science & Medicine, 8(2), 179189. PubMed ID: 24149524

    • Search Google Scholar
    • Export Citation
  • Barutcu, A., Witcomb, G.L., & James, L.J. (2019). Anticipation of aerobic exercise increases planned energy intake for a post-exercise meal. Appetite, 138, 198203. PubMed ID: 30951772 doi:10.1016/j.appet.2019.03.035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergamin, M., Ermolao, A., Matten, S., Sieverdes, J.C., & Zaccaria, M. (2015). Metabolic and cardiovascular responses during aquatic exercise in water at different temperatures in older adults. Research Quarterly for Exercise and Sport, 86(2), 163171. PubMed ID: 25513937 doi:10.1080/02701367.2014.981629

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blundell, J.E., Gibbons, C., Caudwell, P., Finlayson, G., & Hopkins, M. (2015). Appetite control and energy balance: Impact of exercise. Obesity Reviews, 16(suppl 1), 6776. PubMed ID: 25614205 doi:10.1111/obr.12257

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G., Hassmén, P., & Lagerström, M. (1987). Perceived exertion related to heart rate and blood lactate during arm and leg exercise. European Journal of Applied Physiology and Occupational Physiology, 56(6), 679685. PubMed ID: 3678222 doi:10.1007/bf00424810

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bréchat, P.H., Wolf, J.P., Simon-Rigaud, M.L., Bréchat, N., Kantelip, J.P., Berthelay, S., & Regnard, J. (1999). Influence of immersion on respiratory requirements during 30-min cycling exercise. European Respiratory Journal, 13(4), 860866. PubMed ID: 10362054 doi:10.1034/j.1399-3003.1999.13d28.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.

  • Crabtree, D.R., & Blannin, A.K. (2015). Effects of exercise in the cold on Ghrelin, PYY, and food intake in overweight adults. Medicine & Science in Sports & Exercise, 47(1), 4957. PubMed ID: 24870575 doi:10.1249/mss.0000000000000391

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crabtree, D.R., Chambers, E.S., Hardwick, R.M., & Blannin, A.K. (2014). The effects of high-intensity exercise on neural responses to images of food. The American Journal of Clinical Nutrition, 99(2), 258267. PubMed ID: 24305681 doi:10.3945/ajcn.113.071381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalton, M., & Finlayson, G. (2014). Psychobiological examination of liking and wanting for fat and sweet taste in trait binge eating females. Physiology & Behavior, 136, 128134. PubMed ID: 24662699 doi:10.1016/j.physbeh.2014.03.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finlayson, G., King, N., & Blundell, J. (2008). The role of implicit wanting in relation to explicit liking and wanting for food: Implications for appetite control. Appetite, 50(1), 120127. PubMed ID: 17655972 doi:10.1016/j.appet.2007.06.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flint, A., Raben, A., Blundell, J.E., & Astrup, A. (2000). Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. International Journal of Obesity and Related Metabolic Disorders, 24(1), 3848. PubMed ID: 10702749 doi:10.1038/sj.ijo.0801083

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnon, D.D., Perrier, L., Dorman, S.C., Oddson, B., Larivière, C., & Serresse, O. (2020). Ambient temperature influences metabolic substrate oxidation curves during running and cycling in healthy men. European Journal of Sport Science, 20(1), 9099. PubMed ID: 31079551 doi:10.1080/17461391.2019.1612949

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnon, D.D., Rintamäki, H., Gagnon, S.S., Cheung, S.S., Herzig, K.H., Porvari, K., & Kyröläinen, H. (2013). Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running. Frontiers in Physiology, 4, 99. PubMed ID: 23675353 doi:10.3389/fphys.2013.00099

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garzon, M., Dupuy, O., Bosquet, L., Nigam, A., Comtois, A.S., Juneau, M., & Gayda, M. (2017). Thermoneutral immersion exercise accelerates heart rate recovery: A potential novel training modality. European Journal of Sport Science, 17(3), 310316. PubMed ID: 27598988 doi:10.1080/17461391.2016.1226391

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garzon, M., Juneau, M., Dupuy, O., Nigam, A., Bosquet, L., Comtois, A., & Gayda, M. (2015). Cardiovascular and hemodynamic responses on dryland vs. immersed cycling. Journal of Science and Medicine in Sport, 18(5), 619623. PubMed ID: 25183667 doi:10.1016/j.jsams.2014.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haman, F., Péronnet, F., Kenny, G.P., Massicotte, D., Lavoie, C., & Weber, J.M. (2005). Partitioning oxidative fuels during cold exposure in humans: Muscle glycogen becomes dominant as shivering intensifies. The Journal of Physiology, 566(Pt 1), 247256. PubMed ID: 15831534 doi:10.1113/jphysiol.2005.086272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howe, S.M., Hand, T.M., & Manore, M.M. (2014). Exercise-trained men and women: Role of exercise and diet on appetite and energy intake. Nutrients, 6(11), 49354960. PubMed ID: 25389897 doi:10.3390/nu6114935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isacco, L., Duché, P., & Boisseau, N. (2012). Influence of hormonal status on substrate utilization at rest and during exercise in the female population. Sports Medicine, 42(4), 327342. PubMed ID: 22380007 doi:10.2165/11598900-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiszewski, P.M., & Ross, R. (2009). The utility of physical activity in the management of global cardiometabolic risk. Obesity (Silver Spring), 17(suppl 3), S3S14. PubMed ID: 19927143 doi:10.1038/oby.2009.382

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McArdle, W.D., Magel, J.R., Lesmes, G.R., & Pechar, G.S. (1976). Metabolic and cardiovascular adjustment to work in air and water at 18, 25, and 33 degrees C. Journal of Applied Physiology, 40(1), 8590. PubMed ID: 1248988 doi:10.1152/jappl.1976.40.1.85

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McArdle, W.D., Toner, M.M., Magel, J.R., Spina, R.J., & Pandolf, K.B. (1992). Thermal responses of men and women during cold-water immersion: Influence of exercise intensity. European Journal of Applied Physiology and Occupational Physiology, 65(3), 265270. PubMed ID: 1396657 doi:10.1007/bf00705092

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguet, M., Fillon, A., Khammassi, M., Masurier, J., Julian, V., Pereira, B., … Thivel, D. (2018). Appetite, energy intake and food reward responses to an acute High Intensity Interval Exercise in adolescents with obesity. Physiology & Behavior, 195, 9097. PubMed ID: 30048642 doi:10.1016/j.physbeh.2018.07.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morlock, J.F., & Dressendorfer, R.H. (1974). Modification of a standard bicycle ergometer for underwater use. Undersea Biomedical Research, 1(4), 335342. PubMed ID: 4469099

    • Search Google Scholar
    • Export Citation
  • Pendergast, D.R., Moon, R.E., Krasney, J.J., Held, H.E., & Zamparo, P. (2015). Human physiology in an aquatic environment. Comprehensive Physiology, 5(4), 17051750. PubMed ID: 26426465 doi:10.1002/cphy.c140018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Péronnet, F., & Massicotte, D. (1991). Table of nonprotein respiratory quotient: An update. Canadian Journal of Sport Sciences, 16(1), 2329. PubMed ID: 1645211

    • Search Google Scholar
    • Export Citation
  • Pomerleau, M., Imbeault, P., Parker, T., & Doucet, E. (2004). Effects of exercise intensity on food intake and appetite in women. The American Journal of Clinical Nutrition, 80(5), 12301236. PubMed ID: 15531670 doi:10.1093/ajcn/80.5.1230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, J., Paxman, J., Dalton, C., Winter, E., & Broom, D. (2015). Effects of an acute bout of aerobic exercise on immediate and subsequent three-day food intake and energy expenditure in active and inactive pre-menopausal women taking oral contraceptives. Appetite, 89, 183191. PubMed ID: 25683796 doi:10.1016/j.appet.2015.02.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaun, G.Z., Pinto, S.S., Praia, A.B.C., & Alberton, C.L. (2018). Energy expenditure and EPOC between water-based high-intensity interval training and moderate-intensity continuous training sessions in healthy women. Journal of Sports Sciences, 36(18), 20532060. PubMed ID: 29400623 doi:10.1080/02640414.2018.1435967

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, Y., Avellini, B.A., Toner, M.M., & Pandolf, K.B. (1981). Modification of the Monark bicycle ergometer for underwater exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 50(3), 679683. PubMed ID: 7251458 doi:10.1152/jappl.1981.50.3.679

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheldahl, L.M., Buskirk, E.R., Loomis, J.L., Hodgson, J.L., & Mendez, J. (1982). Effects of exercise in cool water on body weight loss. International Journal of Obesity, 6(1), 2942. PubMed ID: 7068314

    • Search Google Scholar
    • Export Citation
  • Shorten, A.L., Wallman, K.E., & Guelfi, K.J. (2009). Acute effect of environmental temperature during exercise on subsequent energy intake in active men. The American Journal of Clinical Nutrition, 90(5), 12151221. PubMed ID: 19793848 doi:10.3945/ajcn.2009.28162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sosner, P., Gayda, M., Dupuy, O., Garzon, M., Lemasson, C., Gremeaux, V., … Bosquet, L. (2016). Ambulatory blood pressure reduction following high-intensity interval exercise performed in water or dryland condition. Journal of the American Society of Hypertension, 10(5), 420428. PubMed ID: 27026570 doi:10.1016/j.jash.2016.02.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmons, B.A., Araujo, J., & Thomas, T.R. (1985). Fat utilization enhanced by exercise in a cold environment. Medicine & Science in Sports & Exercise, 17(6), 673678. PubMed ID: 4079738 doi:10.1249/00005768-198512000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, L.J., Dressendorfer, R.H., Holland, E., McCoy, S.C., & Ferguson, M.A. (2005). Increased caloric intake soon after exercise in cold water. International Journal of Sport Nutrition and Exercise Metabolism, 15(1), 3847. PubMed ID: 15902988 doi:10.1123/ijsnem.15.1.38

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yazigi, F., Pinto, S., Colado, J., Escalante, Y., Armada-da-Silva, P.A., Brasil, R., & Alves, F. (2013). The cadence and water temperature effect on physiological responses during water cycling. European Journal of Sport Science, 13(6), 659665. PubMed ID: 24175730 doi:10.1080/17461391.2013.770924

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuntz, N., & Schumburg, D. (1901). Studien zu einer Physiologie des Marsches. Berlin, Germany: Verlag von August Hirchwald.

All Time Past Year Past 30 Days
Abstract Views 62 62 62
Full Text Views 7 7 7
PDF Downloads 5 5 5