Ultrasound Measurements of Subcutaneous Fat Thickness Are Robust Against Hydration Changes

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Utah State University
  • 2 University of Otago
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Ultrasound is an appealing tool to assess body composition, combining the portability of a field method with the accuracy of a laboratory method. However, unlike other body composition methods, the effect of hydration status on validity is unknown. This study evaluated the impact of acute hydration changes on ultrasound measurements of subcutaneous fat thickness and estimates of body fat percentage. In a crossover design, 11 adults (27.1 ± 10.5 years) completed dehydration and hyperhydration trials to alter body mass by approximately ±2%. Dehydration was achieved via humid heat (40 °C, 60% relative humidity) with exercise, whereas hyperhydration was via ingestion of lightly salted water. Ultrasound measurements were taken at 11 body sites before and after each treatment. Participants lost 1.56 ± 0.58 kg (−2.0 ± 0.6%) during the dehydration trial and gained 0.90 ± 0.21 kg (1.2 ± 0.2%) during the hyperhydration trial even after urination. The sum of fat thicknesses as measured by ultrasound differed by <0.90 mm across trials (p = .588), and ultrasound estimates of body fat percentage differed by <0.5% body fat. Ultrasound measures of subcutaneous adipose tissue were unaffected by acute changes in hydration status by extents beyond which are rare and overtly self-correcting, suggesting that this method provides reliable and robust body composition results even when subjects are not euhydrated.

Wagner is with the Kinesiology & Health Science Department, Utah State University, Logan, UT, USA. Cotter is with the School of Physical Education, Sport, & Exercise Sciences, University of Otago, Dunedin, New Zealand.

Wagner (dale.wagner@usu.edu) is corresponding author.
  • Ackland, T.R., & Müller, W. (2018). Imaging method: Ultrasound. In P.A. Hume, D.A. Kerr, & T.R. Ackland (Eds.), Best practice protocols for physique assessment in sport (pp. 131141). Singapore: Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American College of Sports Medicine. (2016). Nutrition and athletic performance. Medicine & Science in Sports & Exercise, 48, 543568.

    • Search Google Scholar
    • Export Citation
  • American College of Sports Medicine. (2018). ACSM’s guidelines for exercise testing and prescription (10th ed.). Philadelphia, PA: Wolters Kluwer.

    • Search Google Scholar
    • Export Citation
  • Baker, G.L. (1969). Human adipose tissue composition and age. American Journal of Clinical Nutrition, 22(7), 829835. PubMed ID: 5816105 doi:10.1093/ajcn/22.7.829

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. PubMed ID: 17695343 doi:10.3758/BF03193146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heiss, C.J., Gara, N., Novotny, D., Heberle, H., Morgan, L., Stufflebeam, J., & Fairfield, M. (2009). Effect of a 1 liter fluid load on body composition measured by air displacement plethysmography and bioelectrical impedance. Journal of Exercise Physiology Online, 12(2), 18.

    • Search Google Scholar
    • Export Citation
  • Jackson, A.S., & Pollock, M.L. (1978). Generalized equations for predicting body density of men. British Journal of Nutrition, 40(3), 497504. PubMed ID: 718832 doi:10.1079/BJN19780152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, A.S., Pollock, M.L., & Ward, A. (1980). Generalized equations for predicting body density of women. Medicine & Science in Sports & Exercise, 12(3), 175182. PubMed ID: 7402053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, A., Slater, G.J., & Byrne, N. (2017). Impact of food and fluid intake on technical and biological measurement error in body composition assessment methods in athletes. British Journal of Nutrition, 117(4), 591601. PubMed ID: 28382898 doi:10.1017/S0007114517000551

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loenneke, J.P., Barnes, J.T., Wagganer, J.D., Wilson, J.M., Lowery, R.P., Green, C.E., & Pujol, T.J. (2014). Validity and reliability of an ultrasound system for estimating adipose tissue. Clinical Physiology and Functional Imaging, 34(2), 159162. PubMed ID: 23879395 doi:10.1111/cpf.12077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohman, T.G., Milliken, L.A., & Sardinha, L.B. (2020). Introduction to body composition and assessment. In T.G. Lohman & L.A. Milliken (Eds.), ACSM’s body composition assessment (pp. 115). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Meyer, N.L., Sundgot-Borgen, J., Lohman, T.G., Ackland, T.R., Stewart, A.D., Maughan, R.J., … Müller, W. (2013). Body composition for health and performance: A survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on Body Composition, Health and Performance under the auspices of the IOC Medical Commission. British Journal of Sports Medicine, 47(16), 10441053. PubMed ID: 24065075 doi:10.1136/bjsports-2013-092561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, H.H., Hamilton, T.S., Steggerda, F.R., & Bean, H.W. (1945). The chemical composition of the adult human body and its bearing on the biochemistry of growth. Journal of Biological Chemistry, 158, 625637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W., Horn, M., Fürhapter-Rieger, A., Kainz, P., Kröpfl, J.M., Maughan, R.J., & Ahammer, H. (2013). Body composition in sport: A comparison of a novel ultrasound imaging technique to measure subcutaneous fat tissue compared with skinfold measurement. British Journal of Sports Medicine, 47(16), 10281035. PubMed ID: 24055780 doi:10.1136/bjsports-2013-092232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W., Lohman, T.G., Stewart, A.D., Maughan, R.J., Meyer, N.L., Sardinha, L.B., … Ackland, T.R. (2016). Subcutaneous fat patterning in athletes: Selection of appropriate sites and standardization of a novel ultrasound measurement technique: Ad hoc working group on body composition, health and performance, under auspices of the IOC Medical Commission. British Journal of Sports Medicine, 50(1), 4554. PubMed ID: 26702017 doi:10.1136/bjsports-2015-095641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nickerson, B.S., Snarr, R.L., & Ryan, G.A. (2020). Bias varies for bioimpedance analysis and skinfold technique when stratifying collegiate male athletes’ fat-free mass hydration levels. Applied Physiology, Nutrition and Metabolism, 45(3), 336339. PubMed ID: 31730376 doi:10.1139/apnm-2019-0616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risoul-Salas, V., Reguant-Closa, A., Sardinha, L.B., Harris, M., Lohman, T.G., Kirihennedige, N., & Meyer, N.L. (2020). Body composition applications. In T.G. Lohman & L.A. Milliken (Eds.), ACSM’s body composition assessment (pp. 135151). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Sanchez, N., & Galloway, S.D.R. (2015). Errors in dual energy x-ray absorptiometry estimation of body composition induced by hypohydration. International Journal of Sport Nutrition and Exercise Metabolism, 25(1), 6068. PubMed ID: 25029477 doi:10.1123/ijsnem.2014-0067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, G., Shaw, G., & Kerr, A. (2018). Athlete considerations for physique measurement. In P.A. Hume, D.A. Kerr, & T.R. Ackland (Eds.), Best practice protocols for physique assessment in sport (pp. 4760). Singapore: Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith-Ryan, A.E., Fultz, S.N., Melvin, M.N., Wingfield, H.L., & Woessner, M.N. (2014). Reproducibility and validity of A-mode ultrasound for body composition measurement and classification in overweight and obese men and women. PLoS One, 9(3), e0091750. PubMed ID: 24618841 doi:10.1371/journal.pone.0091750

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L.W. (1962). The chemical composition of adipose tissue of man and mice. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences, 47(2), 179188. PubMed ID: 13920823 doi:10.1113/expphysiol.1962.sp001589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toomey, C., McCreesh, K., Leahy, S., & Jakeman, P. (2011). Technical considerations for accurate measurement of subcutaneous adipose tissue thickness using B-mode ultrasound. Ultrasound, 19(2), 9196. doi:10.1258/ult.2011.010057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toomey, C.M., McCormack, W.G., & Jakeman, P. (2017). The effect of hydration status on the measurement of lean tissue mass by dual-energy x-ray absorptiometry. European Journal of Applied Physiology, 117(3), 567574. PubMed ID: 28204901 doi:10.1007/s00421-017-3552-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vukovich, M.D., & Peeters, B.M. (2003). Reliability of air-displacement plethysmography in detecting body composition changes after water ingestion and after creatine supplementation. Journal of Exercise Physiology Online, 6(2), 115122.

    • Search Google Scholar
    • Export Citation
  • Wagner, D.R. (2013). Ultrasound as a tool to assess body fat. Journal of Obesity, 2013, 280713. PubMed ID: 24062944 doi:10.1155/2013/280713

  • Wagner, D.R., Cain, D.L., & Clark, N.M. (2016). Validity and reliability of A-mode ultrasound for body composition assessment of NCAA division I athletes. PLoS One, 11(4), e0153146. PubMed ID: 27073854 doi:10.1371/journal.pone.0153146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, D.R., Teramoto, M., Judd, T., Gordon, J., McPherson, C., & Robison, A. (2020). Comparison of A-mode and B-mode ultrasound for measurement of subcutaneous fat. Ultrasound in Medicine and Biology, 46(4), 944951. PubMed ID: 31948844 doi:10.1016/j.ultrasmedbio.2019.11.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, R., Rempel, R., & Anderson, G.S. (1999). Modeling dynamic skinfold compression. American Journal of Human Biology, 11(4), 531537. PubMed ID: 11533973 doi:10.1002/(SICI)1520-6300(1999)11:4<531::AID-AJHB13>3.0.CO;2-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weir, J.P. (2005). Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research, 19(1), 231240. PubMed ID: 15705040 doi:10.1519/15184.1

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 15 15 15
Full Text Views 3 3 3
PDF Downloads 1 1 1