The Effect of Creatine Supplementation on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention Trials

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Loughborough University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

This systematic review and meta-analysis examined the effects of creatine supplementation on recovery from exercise-induced muscle damage, and is reported according to the PRISMA guidelines. MEDLINE and SPORTDiscus were searched for articles from inception until April 2020. Inclusion criteria were adult participants (≥18 years); creatine provided before and/or after exercise versus a noncreatine comparator; measurement of muscle function recovery, muscle soreness, inflammation, myocellular protein efflux, oxidative stress; range of motion; randomized controlled trials in humans. Thirteen studies (totaling 278 participants; 235 males and 43 females; age range 20–60 years) were deemed eligible for analysis. Data extraction was performed independently by both authors. The Cochrane Collaboration Risk of Bias Tool was used to critically appraise the studies; forest plots were generated with random-effects model and standardized mean differences. Creatine supplementation did not alter muscle strength, muscle soreness, range of motion, or inflammation at each of the five follow-up times after exercise (<30 min, 24, 48, 72, and 96 hr; p > .05). Creatine attenuated creatine kinase activity at 48-hr postexercise (standardized mean difference: −1.06; 95% confidence interval [−1.97, −0.14]; p = .02) but at no other time points. High (I2; >75%) and significant (Chi2; p < .01) heterogeneity was identified for all outcome measures at various follow-up times. In conclusion, creatine supplementation does not accelerate recovery following exercise-induced muscle damage; however, well-controlled studies with higher sample sizes are warranted to verify these conclusions. Systematic review registration (PROSPERO CRD42020178735).

The authors are with the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.

Clifford (t.clifford@lboro.ac.uk) is corresponding author.

Supplementary Materials

    • Supplementary Figure S1 (PDF 108 KB)
    • Supplementary Figure S2 (PDF 90 KB)
    • Supplementary Figure S3 (PDF 91 KB)
    • Supplementary Figure S4 (PDF 79 KB)
    • Supplementary Figure S5 (PDF 79 KB)
    • Supplementary Material (PDF 86 KB)
    • Supplementary Table S1 (PDF 156 KB)
    • Supplementary Table S2 (PDF 71 KB)
  • Amiri, M., Ghiasvand, R., Kaviani, M., Forbes, S.C., & Salehi-Abargouei, A. (2019). Chocolate milk for recovery from exercise: A systematic review and meta-analysis of controlled clinical trials. European Journal of Clinical Nutrition, 73(6), 835849. PubMed ID: 29921963 doi:10.1038/s41430-018-0187-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, A. (2006). Using recovery modalities between training sessions in elite athletes. Sports Medicine, 36(9), 781796. PubMed ID: 16937953 doi:10.2165/00007256-200636090-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassit, R.A., Curi, R., & Costa Rosa, L.F.B.P. (2008). Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids, 35(2), 425431. PubMed ID: 17917696 doi:10.1007/s00726-007-0582-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassit, R.A., Pinheiro, C.H.J., Vitzel, K.F., Sproesser, A.J., Silveira, L.R., & Curi, R. (2010). Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. European Journal of Applied Physiology, 108(5), 945955. PubMed ID: 19956970 doi:10.1007/s00421-009-1305-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basta, P., Skarpańska-Stejnborn, A., & Pilaczyńska-Szczesniak, L. (2006). Creatine supplementation and parameters of exercise-induced oxidative stress after a standard rowing test. Studies in Physical Culture and Tourism, 13(1), 2327.

    • Search Google Scholar
    • Export Citation
  • Bieuzen, F., Bleakley, C.M., & Costello, J.T. (2013). Contrast water therapy and exercise induced muscle damage: A systematic review and meta-analysis. PLoS One, 8(4), e62356. PubMed ID: 23626806 doi:10.1371/journal.pone.0062356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleakley, C., McDonough, S., Gardner, E., Baxter, D.G., Hopkins, T.J., & Davison, G.W. (2012). Cold-Water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Cochrane Database of Systematic Reviews, 2012(2), CD008262. PubMed ID: 22336838 doi:10.1002/14651858.cd008262.pub2

    • Search Google Scholar
    • Export Citation
  • Boychuk, K.E., Lanovaz, J.L., Krentz, J.R., Lishchynsky, J.T., Candow, D G., & Farthing, J.P. (2016). Creatine supplementation does not alter neuromuscular recovery after eccentric exercise. Muscle & Nerve, 54(3), 487495. PubMed ID: 26930603 doi:10.1002/mus.25091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buford, T.W., Kreider, R.B., Stout, J.R., Greenwood, M., Campbell, B., Spano, M., … Antonio, J. (2007). International Society of Sports Nutrition position stand: Creatine supplementation and exercise. Journal of the International Society of Sports Nutrition, 4(1), 6. PubMed ID: 17908288 doi:10.1186/1550-2783-4-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, D.G., Smith-Palmer, T., Holt, L.E., Head, B., & Chilibeck, P.D. (2001). The effect of 7 days of creatine supplementation on 24-hour urinary creatine excretion. Journal of Strength and Conditioning Research, 15(1), 5962. PubMed ID: 11708707

    • Search Google Scholar
    • Export Citation
  • Button, K.S., Ioannidis, J.P., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S., & Munafò, M.R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365376. PubMed ID: 23571845 doi:10.1038/nrn3475

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, K., Hume, P., & Maxwell, L. (2003). Delayed onset muscle soreness. Sports Medicine, 33(2), 145164. PubMed ID: 12617692 doi:10.2165/00007256-200333020-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarkson, P.M., & Hubal, M.J. (2001). Are women less susceptible to exercise-induced muscle damage? Current Opinion in Clinical Nutrition and Metabolic Care, 4(6), 527531. PubMed ID: 11706288 doi:10.1097/00075197-200111000-00011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooke, M.B., Rybalka, E., Williams, A.D., Cribb, P.J., & Hayes, A. (2009). Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. Journal of the International Society of Sports Nutrition, 6(1), 13. PubMed ID: 19490606 doi:10.1186/1550-2783-6-13

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clifford, T., Jeffries, O., Stevenson, E.J., & Davies, K.A.B. (2019). The effects of vitamin C and E on exercise-induced physiological adaptations: A systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 60(21), 36693679. PubMed ID: 31851538 doi:10.1080/10408398.2019.1703642

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costello, J.T., Baker, P.R., Minett, G.M., Bieuzen, F., Stewart, I.B., & Bleakley, C. (2016). Cochrane review: Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. Journal of Evidence-Based Medicine, 9(1), 4344. PubMed ID: 26779801 doi:10.1111/jebm.12187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Costa, B.R., Nüesch, E., Rutjes, A.W., Johnston, B.C., Reichenbach, S., & Trelle, S., … Jüni, P. (2013). Combining follow-up and change data is valid in meta-analyses of continuous outcomes: A meta-epidemiological study. Journal of Clinical Epidemiology, 66(8), 847855. PubMed ID: 23747228 doi:10.1016/j.jclinepi.2013.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deeks, J.J., Higgins, J.P.T., & Altman, D.G. (2019). Analysing data and undertaking meta-analyses. In J.P.T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M.J. Page, & V.A. Welch (Eds.), Cochrane handbook for systematic reviews of interventions (pp. 241284). London, UK: Cochrane.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deminice, R., Rosa, F.T., Franco, G.S., Jordao, A.A., & de Freitas, E.C. (2013). Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition, 29(9), 11271132. PubMed ID: 23800565 doi:10.1016/j.nut.2013.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doma, K., Deakin, G.B., & Bentley, D.J. (2017). Implications of impaired endurance performance following single bouts of resistance training: An alternate concurrent training perspective. Sports Medicine, 47(11), 21872200. PubMed ID: 28702901 doi:10.1007/s40279-017-0758-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drevon, D., Fursa, S.R., & Malcolm, A.L. (2016). Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behavior Modification, 41(2), 323339. PubMed ID: 27760807 doi:10.1177/0145445516673998

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebbeling, C.B., & Clarkson, P.M. (1989). Exercise-induced muscle damage and adaptation. Sports Medicine, 7(4), 207234. PubMed ID: 2657962 doi:10.2165/00007256-198907040-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández-Landa, J., Calleja-González, J., León-Guereño, P., Caballero-García, A., Córdova, A., & Mielgo-Ayuso, J. (2019). Effect of the combination of creatine monohydrate plus HMB supplementation on sports performance, body composition, markers of muscle damage and hormone status: A systematic review. Nutrients, 11(10), 2528. PubMed ID: 31635165 doi:10.3390/nu11102528

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forsberg, A.M., Nilsson, E., Werneman, J., Bergström, J., & Hultman, E. (1991). Muscle composition in relation to age and sex. Clinical Science, 81(2), 249256. PubMed ID: 1716189 doi:10.1042/cs0810249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, R.C., Söderlund, K., & Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clinical Science, 83(3), 367374. PubMed ID: 1327657 doi:10.1042/cs0830367

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harty, P.S., Cottet, M.L., Malloy, J.K., & Kerksick, C.M. (2019). Nutritional and supplementation strategies to prevent and attenuate exercise-induced muscle damage: A brief review. Sports Medicine–Open, 5(1), 1. PubMed ID: 30617517 doi:10.1186/s40798-018-0176-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, J.P.T. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557560. PubMed ID: 12958120 doi:10.1136/bmj.327.7414.557

  • Higgins, J.P.T., Altman, D.G., Gøtzsche, P.C., Jüni, P., Moher, D., Oxman, A.D., … Sterne, J.A.C. (2011). The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ, 343, d5928. PubMed ID: 22008217 doi:10.1136/bmj.d5928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, J.P.T., Li, T., & Deeks, J.J. (2019). Choosing effect measures and computing estimates of effect. In J.P.T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M.J. Page, & V.A. Welch (Eds.), Cochrane handbook for systematic reviews of interventions (pp. 143176). London, UK: Cochrane.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyldahl, R.D., Chen, T.C., & Nosaka, K. (2017). Mechanisms and mediators of the skeletal muscle repeated bout effect. Exercise and Sport Sciences Reviews, 45(1), 2433. PubMed ID: 27782911 doi:10.1249/JES.0000000000000095

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyldahl, R.D., & Hubal, M.J. (2014). Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise. Muscle & Nerve, 49(2), 155170. PubMed ID: 24030935 doi:10.1002/mus.24077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., Lee, J., Kim, S., Yoon, D., Kim, J., & Sung, D.J. (2015). Role of creatine supplementation in exercise-induced muscle damage: A mini review. Journal of Exercise Rehabilitation, 11(5), 244250. PubMed ID: 26535213 doi:10.12965/jer.150237

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-López, J.A., Page, M.J., Lipsey, M.W., & Higgins, J.P.T. (2018). Dealing with effect size multiplicity in systematic reviews and meta-analyses. Research Synthesis Methods, 9(3), 336351. PubMed ID: 29971966 doi:10.1002/jrsm.1310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, M., Pereira, R., Sampaio-Jorge, F., Knifis, F., & Hackney, A. (2009). Creatine supplementation: Effects on blood creatine kinase activity responses to resistance exercise and creatine kinase activity measurement. Brazilian Journal of Pharmaceutical Sciences, 45(4), 751757. doi:10.1590/S1984-82502009000400020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mackey, A.L., & Kjaer, M. (2017). The breaking and making of healthy adult human skeletal muscle in vivo. Skeletal Muscle, 7(1), 24. PubMed ID: 29115986 doi:10.1186/s13395-017-0142-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manfredi, T.G., Fielding, R.A., O’Reilly, K.P., Meredith, C.N., Lee, H.Y., & Evans, W.J. (1991). Plasma creatine kinase activity and exercise-induced muscle damage in older men. Medicine & Science in Sports & Exercise, 23(9), 10281034. PubMed ID: 1943622 doi:10.1249/00005768-199109000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenzie, J.E., Brennan, S.E., Ryan, R.E., Thomson, H.J., & Johnston, R.V. (2019). Summarizing study characteristics and preparing for synthesis. In J.P.T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M.J. Page, & V.A. Welch (Eds.), Cochrane handbook for systematic reviews of interventions (pp. 229240). London, UK: Cochrane.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKinnon, N.B., Graham, M.T., & Tiidus, P.M. (2012). Effect of creatine supplementation on muscle damage and repair following eccentrically-induced damage to the elbow flexor muscles. Journal of Sports Science and Medicine, 11(4), 653659. PubMed ID: 24150075

    • Search Google Scholar
    • Export Citation
  • Minajeva, A., Ventura-Clapier, R., & Veksler, V. (1996). Ca2+ uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase. Pflügers Archiv, 432(5), 904912. PubMed ID: 8772142 doi:10.1007/s004240050214

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62(10), 10061012. PubMed ID: 19631508 doi:10.1016/j.jclinepi.2009.06.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsen, S., Aagaard, P., Kadi, F., Tufekovic, G., Verney, J., Olesen, J.L., … Kjær, M. (2006). Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. The Journal of Physiology, 573(2), 525534. PubMed ID: 16581862 doi:10.1113/jphysiol.2006.107359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owens, D.J., Twist, C., Cobley, J.N., Howatson, G., & Close, G.L. (2018). Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? European Journal of Sport Science, 19(1), 7185. PubMed ID: 30110239 doi:10.1080/17461391.2018.1505957

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Page, M.J., Higgins, J.P.T., & Sterne, J.A.C. (2019). Assessing risk of bias due to missing results in a synthesis. In J.P.T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M.J. Page, & V.A. Welch (Eds.), Cochrane handbook for systematic reviews of interventions (pp. 349374). London, UK: Cochrane.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parise, G., Mihic, S., MacLennan, D., Yarasheski, K.E., & Tarnopolsky, M.A. (2001). Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. Journal of Applied Physiology, 91(3), 10411047. PubMed ID: 11509496 doi:10.1152/jappl.2001.91.3.1041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, S.K., Nelson, W.B., & Hudson, M.B. (2011). Exercise-induced oxidative stress in humans: Cause and consequences. Free Radical Biology and Medicine, 51(5), 942950. PubMed ID: 21167935 doi:10.1016/j.freeradbiomed.2010.12.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, S.K., Smuder, A.J., Kavazis, A.N., & Hudson, M.B. (2010). Experimental guidelines for studies designed to investigate the impact of antioxidant supplementation on exercise performance. International Journal of Sport Nutrition and Exercise Metabolism, 20(1), 214. PubMed ID: 20190346 doi:10.1123/ijsnem.20.1.2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahimi, R. (2011). Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. Journal of Strength and Conditioning Research, 25(12), 34483455. PubMed ID: 22080314 doi:10.1519/JSC.0b013e3182162f2b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranchordas, M.K., Rogerson, D., Soltani, H., & Costello, J.T. (2020). Antioxidants for preventing and reducing muscle soreness after exercise: A Cochrane systematic review. British Journal of Sports Medicine, 54(2), 7478. PubMed ID: 30054340 doi:10.1136/bjsports-2018-099599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rawson, E.S., Clarkson, P.M., & Tarnopolsky, M.A. (2017). Perspectives on exertional rhabdomyolysis. Sports Medicine, 47(Suppl. 1), 3349. PubMed ID: 28332112 doi:10.1007/s40279-017-0689-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rawson, E.S., Conti, M.P., & Miles, M.P. (2007). Creatine Supplementation does not reduce muscle damage or enhance recovery from resistance exercise. The Journal of Strength and Conditioning Research, 21(4), 12081213. PubMed ID: 18076246 doi:10.1519/r-21076.1

    • Search Google Scholar
    • Export Citation
  • Rawson, E.S., Gunn, B., & Clarkson, P.M. (2001). The effects of creatine supplementation on exercise-induced muscle damage. Journal of Strength and Conditioning Research, 15(2), 178184. PubMed ID: 11710402 doi:10.1519/00124278-200105000-00005

    • Search Google Scholar
    • Export Citation
  • Rosene, J., Matthews, T., Ryan, C., Belmore, K., Bergsten, A., Blaisdell, J., … Wilson, E. (2009). Short and longer-term effects of creatine supplementation on exercise induced muscle damage. Journal of Sports Science and Medicine, 8(1), 8996. PubMed ID: 24150561

    • Search Google Scholar
    • Export Citation
  • Saks, V.A., & Strumia, E. (1993). Phosphocreatine: Molecular and cellular aspects of the mechanism of cardioprotective action. Current Therapeutic Research, 53(5), 565598. doi:10.1016/S0011-393X(05)80663-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, R.V.T., Bassit, R.A., Caperuto, E.C., & Costa Rosa, L.F.B.P. (2004). The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30 km race. Life Sciences, 75(16), 19171924. PubMed ID: 15306159 doi:10.1016/j.lfs.2003.11.036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sestili, P., Martinelli, C., Bravi, G., Piccoli, G., Curci, R., Battistelli, M., … Stocchi, V. (2006). Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radical Biology and Medicine, 40(5), 837849. PubMed ID: 16520236 doi:10.1016/j.freeradbiomed.2005.10.035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, L.A., Tromm, C.B., Da Rosa, G., Bom, K., Luciano, T.F., Tuon, T., … Pinho, R.A. (2013). Creatine supplementation does not decrease oxidative stress and inflammation in skeletal muscle after eccentric exercise. Journal of Sports Sciences, 31(11), 11641176. PubMed ID: 23560674 doi:10.1080/02640414.2013.773403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarnopolsky, M.A. (2000). Gender differences in metabolism; nutrition and supplements. Journal of Science and Medicine in Sport, 3(3), 287298. PubMed ID: 11101268 doi:10.1016/S1440-2440(00)80038-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, B.A., Panza, G., Ballard, K.D., White, C.M., & Thompson, P.D. (2018). Creatine supplementation does not alter the creatine kinase response to eccentric exercise in healthy adults on atorvastatin. Journal of Clinical Lipidology, 12(5), 13051312. PubMed ID: 29945780 doi:10.1016/j.jacl.2018.05.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tidball, J.G. (2005). Inflammatory processes in muscle injury and repair. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(2), R345R353. PubMed ID: 15637171 doi:10.1152/ajpregu.00454.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veggi, K.F.T., Machado, M., Koch, A.J., Santana, S.C., Oliveira, S.S., & Stec, M.J. (2013). Oral creatine supplementation augments the repeated bout effect. International Journal of Sport Nutrition and Exercise Metabolism, 23(4), 378387. PubMed ID: 23349298 doi:10.1123/ijsnem.23.4.378

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volek, J.S., Ratamess, N.A., Rubin, M.R., Gómez, A.L., French, D.N., McGuigan, M.M., … Kraemer, W.J. (2004). The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. European Journal of Applied Physiology, 91(5–6), 628637. PubMed ID: 14685870 doi:10.1007/s00421-003-1031-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., Fang, C., Lee, Y., Yang, M., & Chan, K. (2018). Effects of 4-week creatine supplementation combined with complex training on muscle damage and sport performance. Nutrients, 10(11), 1640. PubMed ID: 30400221 doi:10.3390/nu10111640

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, G.L., Lowe, D.A., & Armstrong, R.B. (1999). Measurement tools used in the study of eccentric contraction-induced injury. Sports Medicine, 27(1), 4359. PubMed ID: 10028132 doi:10.2165/00007256-199927010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, J.F., Larsen, L.B., Malmendal, A., Nielsen, N.C., Straadt, I.K., Oksbjerg, N., & Bertram, H.C. (2010). Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics. Journal of the International Society of Sports Nutrition, 7(1), 9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 890 890 310
Full Text Views 59 59 24
PDF Downloads 54 54 21