Isolated Leucine and Branched-Chain Amino Acid Supplementation for Enhancing Muscular Strength and Hypertrophy: A Narrative Review

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 CUNY Lehman College
  • | 2 Institute of Performance Nutrition
  • | 3 California State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Branched-chain amino acids (BCAA) are one of the most popular sports supplements, marketed under the premise that they enhance muscular adaptations. Despite their prevalent consumption among athletes and the general public, the efficacy of BCAA has been an ongoing source of controversy in the sports nutrition field. Early support for BCAA supplementation was derived from extrapolation of mechanistic data on their role in muscle protein metabolism. Of the three BCAA, leucine has received the most attention because of its ability to stimulate the initial acute anabolic response. However, a substantial body of both acute and longitudinal research has now accumulated on the topic, affording the ability to scrutinize the effects of BCAA and leucine from a practical standpoint. This article aims to critically review the current literature and draw evidence-based conclusions about the putative benefits of BCAA or leucine supplementation on muscle strength and hypertrophy as well as illuminate gaps in the literature that warrant future study.

Plotkin, Delcastillo, Van Every, and Schoenfeld are with the Department of Health Sciences, CUNY Lehman College, Bronx, NY, USA. Tipton is with the Institute of Performance Nutrition, Durham, United Kingdom. Aragon is with California State University, Northridge, CA, USA.

Schoenfeld (brad@workout911.com) is corresponding author.
  • Aguiar, A.F., Grala, A.P., da Silva, R.A., Soares-Caldeira, L.F., Pacagnelli, F.L., Ribeiro, A.S., . . . Balvedi, M.C.W. (2017). Free leucine supplementation during an 8-week resistance training program does not increase muscle mass and strength in untrained young adult subjects. Amino Acids, 49(7), 12551262. PubMed ID: 28444456 doi:10.1007/s00726-017-2427-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atherton, P.J., Kumar, V., Selby, A.L., Rankin, D., Hildebrandt, W., Phillips, B.E., … Smith, K. (2017). Enriching a protein drink with leucine augments muscle protein synthesis after resistance exercise in young and older men. Clinical Nutrition, 36(3), 888895. PubMed ID: 27208923 doi:10.1016/j.clnu.2016.04.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagheri, R., Forbes, S.C., Candow, D.G., & Wong, A. (2020). Effects of branched-chain amino acid supplementation and resistance training in postmenopausal women. Experimental Gerontology, 144, 111185. PubMed ID: 33279662 doi:10.1016/j.exger.2020.111185

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagheri, R., Hooshmand Moghadam, B., Ashtary-Larky, D., Forbes, S.C., Candow, D.G., Galpin, A.J., … Wong, A. (2020). Whole egg vs. egg white ingestion during 12 weeks of resistance training in trained young males: A randomized controlled trial. Journal of Strength and Conditioning Research, 35(2), 411419. PubMed ID: 33306586 doi:10.1519/jsc.0000000000003922

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biolo, G., Tipton, K.D., Klein, S., & Wolfe, R.R. (1997). An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. The American Journal of Physiology, 273(1, Pt. 1), E122E129. PubMed ID: 9252488 doi:10.1152/ajpendo.1997.273.1.E122

    • Search Google Scholar
    • Export Citation
  • Blomstrand, E., Eliasson, J., Karlsson, H.K., & Köhnke, R. (2006). Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. The Journal of Nutrition, 136(1 Suppl.), 269S273S. PubMed ID: 16365096 doi:10.1093/jn/136.1.269S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breen, L., & Phillips, S.M. (2011). Skeletal muscle protein metabolism in the elderly: Interventions to counteract the “anabolic resistance” of ageing. Nutrition & Metabolism, 8, 68. PubMed ID: 21975196 doi:10.1186/1743-7075-8-68

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breen, L., & Phillips, S.M. (2012). Nutrient interaction for optimal protein anabolism in resistance exercise. Current Opinion in Clinical Nutrition and Metabolic Care, 15(3), 226232. PubMed ID: 22366920 doi:10.1097/MCO.0b013e3283516850

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brosnan, J.T., & Brosnan, M.E. (2006). Branched-chain amino acids: Enzyme and substrate regulation. The Journal of Nutrition, 136(1 Suppl), 207S211S. PubMed ID: 16365084 doi:10.1093/jn/136.1.207S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burd, N.A., Beals, J.W., Martinez, I.G., Salvador, A.F., & Skinner, S.K. (2019). Food-first approach to enhance the regulation of post-exercise skeletal muscle protein synthesis and remodeling. Sports Medicine, 49(Suppl. 1), 5968. PubMed ID: 30671904 doi:10.1007/s40279-018-1009-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burd, N.A., Holwerda, A.M., Selby, K.C., West, D.W., Staples, A.W., Cain, N.E., … Phillips, S.M. (2010). Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. The Journal of Physiology, 588(16), 31193130. PubMed ID: 20581041 doi:10.1113/jphysiol.2010.192856

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buse, M.G. (1981). In vivo effects of branched chain amino acids on muscle protein synthesis in fasted rats. Hormone and Metabolic Research, 13(9), 502505. PubMed ID: 7298019 doi:10.1055/s-2007-1019316

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, J.W., McClung, J.P., & Pasiakos, S.M. (2019). Recent advances in the characterization of skeletal muscle and whole-body protein responses to dietary protein and exercise during negative energy balance. Advances in Nutrition, 10(1), 7079. PubMed ID: 30596808 doi:10.1093/advances/nmy087

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, E., Ghosh, S., Matsuoka, Y., Ashton-Beaucage, D., Therrien, M., Lemieux, S., … Kitano, H. (2010). A comprehensive map of the mTOR signaling network. Molecular Systems Biology, 6(1), 453. PubMed ID: 21179025 doi:10.1038/msb.2010.108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casperson, S.L., Sheffield-Moore, M., Hewlings, S.J., & Paddon-Jones, D. (2012). Leucine supplementation chronically improves muscle protein synthesis in older adults consuming the RDA for protein. Clinical Nutrition, 31(4), 512519. PubMed ID: 22357161 doi:10.1016/j.clnu.2012.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchward-Venne, T.A., Breen, L., Di Donato, D.M., Hector, A.J., Mitchell, C.J., Moore, D.R., … Phillips, S.M. (2014). Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: A double-blind, randomized trial. The American Journal of Clinical Nutrition, 99(2), 276286. PubMed ID: 24284442 doi:10.3945/ajcn.113.068775

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchward-Venne, T.A., Burd, N.A., Mitchell, C.J., West, D.W., Philp, A., Marcotte, G.R., … Phillips, S.M. (2012). Supplementation of a suboptimal protein dose with leucine or essential amino acids: Effects on myofibrillar protein synthesis at rest and following resistance exercise in men. The Journal of Physiology, 590(11), 27512765. PubMed ID: 22451437 doi:10.1113/jphysiol.2012.228833

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DE Andrade, I.T., Gualano, B., Hevia-LarraÍn, V., Neves-Junior, J., Cajueiro, M., Jardim, F., … Roschel, H. (2020). Leucine supplementation has no further effect on training-induced muscle adaptations. Medicine & Science in Sports & Exercise, 52(8), 18091814. PubMed ID: 32079916 doi:10.1249/MSS.0000000000002307

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieter, B.P., Schoenfeld, B.J., & Aragon, A.A. (2016). The data do not seem to support a benefit to BCAA supplementation during periods of caloric restriction. Journal of the International Society of Sports Nutrition, 13(1), 21. PubMed ID: 27175106 doi:10.1186/s12970-016-0128-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudgeon, W.D., Kelley, E.P., & Scheett, T.P. (2016). In a single-blind, matched group design: Branched-chain amino acid supplementation and resistance training maintains lean body mass during a caloric restricted diet. Journal of the International Society of Sports Nutrition, 13(1), 1. PubMed ID: 26733764 doi:10.1186/s12970-015-0112-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliot, T.A., Cree, M.G., Sanford, A.P., Wolfe, R.R., & Tipton, K.D. (2006). Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Medicine & Science in Sports & Exercise, 38(4), 667674. PubMed ID: 16679981 doi:10.1249/01.mss.0000210190.64458.25

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estoche, J.M., Jacinto, J.L., Roveratti, M.C., Gabardo, J.M., Buzzachera, C.F., de Oliveira, E.P., … Aguiar, A.F. (2019). Branched-chain amino acids do not improve muscle recovery from resistance exercise in untrained young adults. Amino Acids, 51(9), 13871395. PubMed ID: 31468208 doi:10.1007/s00726-019-02776-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fouré, A., & Bendahan, D. (2017). Is branched-chain amino acids supplementation an efficient nutritional strategy to alleviate skeletal muscle damage? A systematic review. Nutrients, 9(10), 1047. PubMed ID: 28934166 doi:10.3390/nu9101047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garlick, P.J., & Grant, I. (1988). Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. The Biochemical Journal, 254(2), 579584. PubMed ID: 3052439 doi:10.1042/bj2540579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giezenaar, C., Chapman, I., Luscombe-Marsh, N., Feinle-Bisset, C., Horowitz, M., & Soenen, S. (2016). Ageing is associated with decreases in appetite and energy intake--A meta-analysis in healthy adults. Nutrients, 8(1), 28. PubMed ID: 26751475 doi:10.3390/nu8010028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glynn, E.L., Fry, C.S., Drummond, M.J., Dreyer, H.C., Dhanani, S., Volpi, E., & Rasmussen, B.B. (2010). Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 299(2), R533R540. PubMed ID: 20519362 doi:10.1152/ajpregu.00077.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackman, S.R., Witard, O.C., Philp, A., Wallis, G.A., Baar, K., & Tipton, K.D. (2017). Branched-chain amino acid ingestion stimulates muscle myofibrillar protein synthesis following resistance exercise in humans. Frontiers in Physiology, 8, 390. PubMed ID: 28638350 doi:10.3389/fphys.2017.00390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joanisse, S., Lim, C., McKendry, J., Mcleod, J.C., Stokes, T., & Phillips, S.M. (2020). Recent advances in understanding resistance exercise training-induced skeletal muscle hypertrophy in humans. F1000 Research, 9, F1000 Faculty Rev-141. PubMed ID: 32148775 doi:10.12688/f1000research.21588.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsanos, C.S., Kobayashi, H., Sheffield-Moore, M., Aarsland, A., & Wolfe, R.R. (2006). A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. American Journal of Physiology, Endocrinology and Metabolism, 291(2), E381E387. PubMed ID: 16507602 doi:10.1152/ajpendo.00488.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kephart, W.C., Mumford, P.W., McCloskey, A.E., Holland, A.M., Shake, J.J., Mobley, C.B., … Roberts, M.D. (2016). Post-exercise branched chain amino acid supplementation does not affect recovery markers following three consecutive high intensity resistance training bouts compared to carbohydrate supplementation. Journal of the International Society of Sports Nutrition, 13(1), 30. PubMed ID: 27468258 doi:10.1186/s12970-016-0142-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.K., Suzuki, T., Saito, K., Yoshida, H., Kobayashi, H., Kato, H., & Katayama, M. (2012). Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. Journal of the American Geriatrics Society, 60(1), 1623. PubMed ID: 22142410 doi:10.1111/j.1532-5415.2011.03776.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S.R., & Jefferson, L.S. (2006). Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. The Journal of Nutrition, 136(1 Suppl), 227S231S. PubMed ID: 16365087 doi:10.1093/jn/136.1.227S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komar, B., Schwingshackl, L., & Hoffmann, G. (2015). Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: A systematic review and meta-analysis. The Journal of Nutrition, Health & Aging, 19(4), 437446. PubMed ID: 25809808 doi:10.1007/s12603-014-0559-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koopman, R., Walrand, S., Beelen, M., Gijsen, A.P., Kies, A.K., Boirie, Y., … van Loon, L.J. (2009). Dietary protein digestion and absorption rates and the subsequent postprandial muscle protein synthetic response do not differ between young and elderly men. The Journal of Nutrition, 139(9), 17071713. PubMed ID: 19625697 doi:10.3945/jn.109.109173

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laplante, M., & Sabatini, D.M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274293. PubMed ID: 22500797 doi:10.1016/j.cell.2012.03.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macnaughton, L.S., Wardle, S.L., Witard, O.C., McGlory, C., Hamilton, D.L., Jeromson, S., … Tipton, K.D. (2016). The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiological Reports, 4(15), e12893. PubMed ID: 27511985 doi:10.14814/phy2.12893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, D.E. (2005). Observations of branched-chain amino acid administration in humans. The Journal of Nutrition, 135(6 Suppl.), 1580S1584S. PubMed ID: 15930473 doi:10.1093/jn/135.6.1580S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, M.E., & Hill, J.O. (1990). Energy content of diets of variable amino acid composition. The American Journal of Clinical Nutrition, 52(5), 770776. PubMed ID: 2239750 doi:10.1093/ajcn/52.5.770

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mettler, S., Mitchell, N., & Tipton, K.D. (2010). Increased protein intake reduces lean body mass loss during weight loss in athletes. Medicine & Science in Sports & Exercise, 42(2), 326337. PubMed ID: 19927027 doi:10.1249/MSS.0b013e3181b2ef8e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moberg, M., Apró, W., Ekblom, B., van Hall, G., Holmberg, H.C., & Blomstrand, E. (2016). Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise. American Journal of Physiology—Cell Physiology, 310(11), C874C884. PubMed ID: 27053525 doi:10.1152/ajpcell.00374.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mobley, C.B., Haun, C.T., Roberson, P.A., Mumford, P.W., Romero, M.A., Kephart, W.C., … Roberts, M.D. (2017). Effects of whey, soy or leucine supplementation with 12 weeks of resistance training on strength, body composition, and skeletal muscle and adipose tissue histological attributes in college-aged males. Nutrients, 9(9), 972. PubMed ID: 28869573 doi:10.3390/nu9090972

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mobley, C.B., Mumford, P.W., McCarthy, J.J., Miller, M.E., Young, K.C., Martin, J.S., … Roberts, M.D. (2017). Whey protein-derived exosomes increase protein synthesis and hypertrophy in C2C12 myotubes. Journal of Dairy Science, 100(1), 4864. PubMed ID: 28341051 doi:10.3168/jds.2016-11341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, R.W., Murphy, K.T., McKellar, S.R., Schoenfeld, B.J., Henselmans, M., Helms, E., … Phillips, S.M. (2017). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British Journal of Sports Medicine, 52(6), 376384. PubMed ID: 28698222 doi:10.1136/bjsports-2017-097608

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council (US) Subcommittee. (1989). Recommended dietary allowances (10th ed.). Washington, DC: National Academies Press.

    • Search Google Scholar
    • Export Citation
  • Park, S., Jang, J., Choi, M.D., Shin, Y.A., Schutzler, S., Azhar, G., … Kim, I.Y. (2020). The anabolic response to dietary protein is not limited by the maximal stimulation of protein synthesis in healthy older adults: A randomized crossover trial. Nutrients, 12(11), 3276. PubMed ID: 33114585 doi:10.3390/nu12113276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pennings, B., Groen, B., de Lange, A., Gijsen, A.P., Zorenc, A.H., Senden, J.M., & van Loon, L.J. (2012). Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. American Journal of Physiology, Endocrinology and Metabolism, 302(8), E992E999. PubMed ID: 22338070 doi:10.1152/ajpendo.00517.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahimi, M.H., Shab-Bidar, S., Mollahosseini, M., & Djafarian, K. (2017). Branched-chain amino acid supplementation and exercise-induced muscle damage in exercise recovery: A meta-analysis of randomized clinical trials. Nutrition, 42, 3036. PubMed ID: 28870476 doi:10.1016/j.nut.2017.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieu, I., Balage, M., Sornet, C., Giraudet, C., Pujos, E., Grizard, J., … Dardevet, D. (2006). Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. The Journal of Physiology, 575(1), 305315. PubMed ID: 16777941 doi:10.1113/jphysiol.2006.110742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rondanelli, M., Opizzi, A., Antoniello, N., Boschi, F., Iadarola, P., Pasini, E., … Dioguardi, F.S. (2011). Effect of essential amino acid supplementation on quality of life, amino acid profile and strength in institutionalized elderly patients. Clinical Nutrition, 30(5), 571577. PubMed ID: 21636183 doi:10.1016/j.clnu.2011.04.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenfeld, B.J., & Aragon, A.A. (2018). How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. Journal of the International Society of Sports Nutrition, 15(1), 10. PubMed ID: 29497353 doi:10.1186/s12970-018-0215-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Showkat, M., Beigh, M.A., & Andrabi, K.I. (2014). mTOR signaling in protein translation regulation: Implications in cancer genesis and therapeutic interventions. Molecular Biology International, 2014, 686984. PubMed ID: 25505994 doi:10.1155/2014/686984

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J.W., Krings, B.M., Shepherd, B.D., Waldman, H.S., Basham, S.A., & McAllister, M.J. (2018). Effects of carbohydrate and branched-chain amino acid beverage ingestion during acute upper body resistance exercise on performance and postexercise hormone response. Applied Physiology, Nutrition, and Metabolism, 43(5), 504509. PubMed ID: 29244956 doi:10.1139/apnm-2017-0563

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spillane, M., Emerson, C., & Willoughby, D.S. (2012). The effects of 8 weeks of heavy resistance training and branched-chain amino acid supplementation on body composition and muscle performance. Nutrition and Health, 21(4), 263273. PubMed ID: 24620007 doi:10.1177/0260106013510999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Symons, T.B., Sheffield-Moore, M., Wolfe, R.R., & Paddon-Jones, D. (2009). A moderate serving of high-quality protein maximally stimulates skeletal muscle protein synthesis in young and elderly subjects. Journal of the American Dietetic Association, 109(9), 15821586. PubMed ID: 19699838 doi:10.1016/j.jada.2009.06.369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tipton, K.D., Elliott, T.A., Ferrando, A.A., Aarsland, A.A., & Wolfe, R.R. (2009). Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein. Applied Physiology, Nutrition, and Metabolism, 34(2), 151161. PubMed ID: 19370045 doi:10.1139/H09-006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tipton, K.D., Hamilton, D.L., & Gallagher, I.J. (2018). Assessing the role of muscle protein breakdown in response to nutrition and exercise in humans. Sports Medicine, 48(Suppl. 1), 5364. PubMed ID: 29368185 doi:10.1007/s40279-017-0845-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanDusseldorp, T.A., Escobar, K.A., Johnson, K.E., Stratton, M.T., Moriarty, T., Cole, N., … Mermier, C.M. (2018). Effect of branched-chain amino acid supplementation on recovery following acute eccentric exercise. Nutrients, 10(10), 1389. PubMed ID: 30275356 doi:10.3390/nu10101389

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vliet, S., Shy, E.L., Abou Sawan, S., Beals, J.W., West, D.W., Skinner, S.K., … Burd, N.A. (2017). Consumption of whole eggs promotes greater stimulation of postexercise muscle protein synthesis than consumption of isonitrogenous amounts of egg whites in young men. The American Journal of Clinical Nutrition, 106(6), 14011412. PubMed ID: 28978542 doi:10.3945/ajcn.117.159855

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verhoeven, S., Vanschoonbeek, K., Verdijk, L.B., Koopman, R., Wodzig, W.K., Dendale, P., & van Loon, L.J. (2009). Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. The American Journal of Clinical Nutrition, 89(5), 14681475. PubMed ID: 19321567 doi:10.3945/ajcn.2008.26668

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldron, M., Whelan, K., Jeffries, O., Burt, D., Howe, L., & Patterson, S.D. (2017). The effects of acute branched-chain amino acid supplementation on recovery from a single bout of hypertrophy exercise in resistance-trained athletes. Applied Physiology, Nutrition, and Metabolism, 42(6), 630636. PubMed ID: 28177706 doi:10.1139/apnm-2016-0569

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, D.J., Piasecki, M., & Atherton, P.J. (2018). The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Research Reviews, 47, 123132. PubMed ID: 30048806 doi:10.1016/j.arr.2018.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witard, O.C., Jackman, S.R., Breen, L., Smith, K., Selby, A., & Tipton, K.D. (2014). Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. The American Journal of Clinical Nutrition, 99(1), 8695. PubMed ID: 24257722 doi:10.3945/ajcn.112.055517

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witard, O.C., Wardle, S.L., Macnaughton, L.S., Hodgson, A.B., & Tipton, K.D. (2016). Protein considerations for optimising skeletal muscle mass in healthy young and older adults. Nutrients, 8(4), 181. PubMed ID: 27023595 doi:10.3390/nu8040181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, R.R. (2017). Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? Journal of the International Society of Sports Nutrition, 14(1), 30. PubMed ID: 28852372 doi:10.1186/s12970-017-0184-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., Wu, Z., Dai, Z., Yang, Y., Wang, W., Liu, C., … Yin, Y. (2013). Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids, 44(4), 11071113. PubMed ID: 23247926 doi:10.1007/s00726-012-1444-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, M.S. (2016). The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients, 8(7), 405. PubMed ID: 27376324 doi:10.3390/nu8070405

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6024 6023 632
Full Text Views 277 277 47
PDF Downloads 223 223 48