Habitual Caffeine Consumption Does Not Interfere With the Acute Caffeine Supplementation Effects on Strength Endurance and Jumping Performance in Trained Individuals

Click name to view affiliation

Vitor de Salles Painelli University of São Paulo
Paulista University

Search for other papers by Vitor de Salles Painelli in
Current site
Google Scholar
PubMed
Close
*
,
Emerson L. Teixeira Paulista University

Search for other papers by Emerson L. Teixeira in
Current site
Google Scholar
PubMed
Close
*
,
Bruno Tardone Paulista University

Search for other papers by Bruno Tardone in
Current site
Google Scholar
PubMed
Close
*
,
Marina Moreno Paulista University

Search for other papers by Marina Moreno in
Current site
Google Scholar
PubMed
Close
*
,
Jonatas Morandini Paulista University

Search for other papers by Jonatas Morandini in
Current site
Google Scholar
PubMed
Close
*
,
Victória H. Larrain University of São Paulo

Search for other papers by Victória H. Larrain in
Current site
Google Scholar
PubMed
Close
*
, and
Flávio O. Pires University of São Paulo

Search for other papers by Flávio O. Pires in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The long-standing caffeine habituation paradigm was never investigated in strength endurance and jumping exercise performance through a straightforward methodology. The authors examined if habitual caffeine consumption would influence the caffeine ergogenic effects on strength endurance and jumping performance as well as perceptual responses. Thirty-six strength-trained individuals were mathematically allocated into tertiles according to their habitual caffeine consumption: low (20 ± 11 mg/day), moderate (88 ± 33 mg/day), and high consumers (281 ± 167 mg/day). Then, in a double-blind, crossover, counterbalanced fashion, they performed a countermovement vertical jump test and a strength endurance test either after caffeine (6 mg/kg) and placebo supplementation or after no supplementation (control). Perceptual responses such as ratings of perceived exertion and pain were measured at the termination of the exercises. Acute caffeine supplementation improved countermovement vertical jump performance (p = .001) and total repetitions (p = .004), regardless of caffeine habituation. Accordingly, analysis of absolute change from the control session showed that caffeine promoted a significantly greater improvement in both countermovement vertical jump performance (p = .004) and total repetitions (p = .0001) compared with placebo. Caffeine did not affect the rating of perceived exertion and pain in any exercise tests, irrespective of tertiles (for all comparisons, p > .05 for both measures). Caffeine side effects were similar in low, moderate, and high caffeine consumers. These results show that habitual caffeine consumption does not influence the potential of caffeine as an ergogenic aid in strength endurance and jumping exercise performance, thus challenging recommendations to withdraw from the habitual caffeine consumption before supplementing with caffeine.

de Salles Painelli and Pires are with the Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil. de Salles Painelli, Teixeira, Tardone, Moreno, and Morandini are with the Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil. Larrain is with the Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.

de Salles Painelli (vitor.painelli@usp.br) is corresponding author.
  • Collapse
  • Expand
  • Areta, J.L., Irwin, C., & Desbrow, B. (2017). Inaccuracies in caffeine intake quantification and other important limitations in recent publication by Gonçalves et al. Journal of Applied Physiology, 123(5), 1414. PubMed ID: 29167205 doi:10.1152/japplphysiol.00489.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Astorino, T.A., Terzi, M.N., Roberson, D.W., & Burnett, T.R. (2011). Effect of caffeine intake on pain perception during high-intensity exercise. International Journal of Sport Nutrition and Exercise Metabolism, 21(1), 2732. PubMed ID: 21411832 doi:10.1123/ijsnem.21.1.27

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsalobre-Fernández, C., Glaister, M., & Lockey, R.A. (2015). The validity and reliability of an iPhone app for measuring vertical jump performance. Journal of Sports Science, 33(15), 15741579. doi:10.1080/02640414.2014.996184

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaumont, R., Cordery, P., Funnell, M., Mears, S., James, L., & Watson, P. (2017). Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. Journal of Sports Science, 35(19), 19201927. doi:10.1080/02640414.2016.1241421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, D.G., & McLellan, T.M. (2002). Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. Journal of Applied Physiology, 93(4), 12271234. PubMed ID: 12235019 doi:10.1152/japplphysiol.00187.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G. (1998). Borg´s perceived exertion and pain scales. Champaign, IL: Human Kinetics.

  • Bosco, C., Luhtanen, P., & Komi, P.V. (1983). A simple method for measurement of mechanical power in jumping. European Journal of Applied Physiology and Occupational Physiology, 50(2), 273282. PubMed ID:6681758 doi:10.1007/BF00422166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulenger, J.P., Patel, J., Post, R.M., Parma, A.M., & Marangos, P.J. (1983). Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sciences, 32(10), 11351142. PubMed ID: 6298543 doi:10.1016/0024-3205(83)90119-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, L.E., & Weir, J.P. (2001). Accurate assessment of muscular strength and power, ASEP procedures recommendation. Journal of Exercise Physiology, 4, 121.

    • Search Google Scholar
    • Export Citation
  • Bühler, E., Lachenmeier, D.W., Schlegel, K., & Winkler, G. (2013). Development of a tool to assess the caffeine intake among teenagers and young adults. Ernährungs Umschau, 61, 5863.

    • Search Google Scholar
    • Export Citation
  • De Salles Painelli, V., Brietzke, C., Franco-Alvarenga, P.E., Canestri, R., Vinícius, Í., & Pires, F.O. (2020). Comment on: “Caffeine and Exercise: What Next?” Sports Medicine, 50(6), 12111218. PubMed ID: 32125669 doi:10.1007/s40279-020-01278-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dodd, S.L., Brooks, E., Powers, S.K., & Tulley, R. (1991). The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. European Journal of Applied Physiology and Occuppational Physiology, 62(6), 424429. doi:10.1007/BF00626615

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, M., & Smith, P.M. (2005). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 15(2), 6978. PubMed ID: 15773860 doi:10.1111/j.1600-0838.2005.00445.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, M.J., Eyre, E., Grgic, J., & Tallis, J. (2019). The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. European Journal of Sport Science, 19(10), 13591366. PubMed ID: 31013204 doi:10.1080/17461391.2019.1601261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, M.J., Stanley, M., Parkhouse, N., Cook, K., & Smith, M. (2013). Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. European Journal of Sport Science, 13(4), 392399. PubMed ID: 23834545 doi:10.1080/17461391.2011.635811

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, M.J., & Oxford, S.W. (2012). Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure. Journal of Sports Medicine & Physical Fitness, 52, 280285.

    • Search Google Scholar
    • Export Citation
  • Evans, J.W. (2019). Periodized resistance training for enhancing skeletal muscle hypertrophy and strength: A mini-review. Frontiers in Physiology, 10, 13. PubMed ID: 30728780 doi:10.3389/fphys.2019.00013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M., Tierney, P., Gray, N., Hawe, G., Macken, M., & Egan, B. (2018). Acute ingestion of caffeinated chewing gum improves repeated sprint performance of team sport athletes with low habitual caffeine consumption. International Journal of Sport Nutrition and Exercise Metabolism, 28(3), 221227. PubMed ID: 29091470 doi:10.1123/ijsnem.2017-0217

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fredholm, B.B., Bättig, K., Holmén, J., Nehlig, A., & Zvartau, E.E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews, 51, 83133. PubMed ID: 10049999

    • Search Google Scholar
    • Export Citation
  • Gonçalves, L.S., Painelli, V.S., Yamaguchi, G., Oliveira, L.F., Saunders, B., Da Silva, R.P., … Gualano, B. (2017). Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. Journal of Applied Physiology, 123(1), 213220. PubMed ID: 28495846 doi:10.1152/japplphysiol.00260.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grgic, J., Grgic, I., Pickering, C., Schoenfeld, B.J., Bishop, D.J., & Pedisic, Z. (2020). Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyzes. British Journal of Sports Medicine, 54(11), 681688. PubMed ID: 30926628 doi:10.1136/bjsports-2018-100278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grgic, J., Lazinica, B., Garofolini, A., Schoenfeld, B.J., Saner, N.J., & Mikulic, P. (2019). The effects of time of day-specific resistance training on adaptations in skeletal muscle hypertrophy and muscle strength: A systematic review and meta-analysis. Chronobiology International, 36(4), 449460. PubMed ID: 30704301 doi:10.1080/07420528.2019.1567524

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grgic, J., & Mikulic, P. (2020). Acute effects of caffeine supplementation on resistance exercise, jumping, and Wingate performance: No influence of habitual caffeine intake. European Journal of Sport Science, 2, 111. doi:10.1080/17461391.2020.1817155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grgic, J., Trexler, E.T., Lazinica, B., & Pedisic, Z. (2018). Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. Journal of the International Society of Sports Nutrition, 15(1), 11. PubMed ID: 29527137 doi:10.1186/s12970-018-0216-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollander, D.B., Durand, R.J, Trynicki, J.L., Larock, D., Castracane, V.D., Hebert, E.P., & Kraemer, R.R. (2003). RPE, pain, and physiological adjustment to concentric and eccentric contractions. Medicine & Science in Sports & Exercise, 35(6), 10171025. PubMed ID: 12783051 doi:10.1249/01.MSS.0000069749.13258.4E

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, W.G. (2020, July 8). How to interpret changes in an athletic performance test. Retrieved from http://www.sportsci.org/jour/04/wghtests.htm

    • Search Google Scholar
    • Export Citation
  • Johansson, B., Georgiev, V., Lindström, K., & Fredholm, B.B. (1997). A1 and A2A adenosine receptors and A1 mRNA in mouse brain: Effect of long-term caffeine treatment. Brain Research, 762(1–2), 153164. PubMed ID: 9262169 doi:10.1016/S0006-8993(97)00378-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, B.J., Farley, R.S., & Caputo, J.L. (2012). Caffeine and sprint performance in habitual and caffeine naïve participants. International Journal of Exercise Science, 5, 5059.

    • Search Google Scholar
    • Export Citation
  • Kuehl, R.O. (2000). Design of experiments: Statistical principles of research design and analysis. Pacific Grove, CA: Duxbury-Thomson Learning.

    • Search Google Scholar
    • Export Citation
  • Lara, B., Ruiz-Moreno, C., Salinero, J.J., & Del Coso, J. (2019). Time course of tolerance to the performance benefits of caffeine. PLoS One, 14(1), e0210275. PubMed ID: 30673725 doi:10.1371/journal.pone.0210275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marangos, P.J, Boulenger, J.P., & Patel, J. (1984). Effects of chronic caffeine on brain adenosine receptors: Regional and ontogenetic studies. Life Science, 34(9), 899907. doi:10.1016/0024-3205(84)90207-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oxfeldt, M., Overgaard, K., Hvid, L.G., & Dalgas, U. (2019). Effects of plyometric training on jumping, sprint performance, and lower body muscle strength in healthy adults: A systematic review and meta-analyses. Scandinavian Journal of Medicine & Science in Sports, 29(10), 14531465. PubMed ID: 31136014 doi:10.1111/sms.13487

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pallarés, J.G., Fernández-Elías, V.E., Ortega, J.F., Muñoz, G., Muñoz-Guerra, J., & Mora-Rodríguez, R. (2013). Neuromuscular responses to incremental caffeine doses: Performance and side effects. Medicine & Science in Sports & Exercise, 45(11), 21842192. PubMed ID: 23669879 doi:10.1249/MSS.0b013e31829a6672

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickering, C., & Grgic, J. (2019). Caffeine and exercise: What next? Sports Medicine, 49(7), 10071030. PubMed ID: 30977054 doi:10.1007/s40279-019-01101-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabol, F., Grgic, J., & Mikulic, P. (2019). The effects of three different doses of caffeine on jumping and throwing performance: A randomized, double-blind, crossover study. International Journal of Sport Physiology and Performance, 14(9), 11701177. doi:10.1123/ijspp.2018-0884

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabir, A., Hooton, A., Tallis, J.F., & Higgins, M. (2018). The influence of caffeine expectancies on sport, exercise, and cognitive performance. Nutrients, 10(10), 1528. doi:10.3390/nu10101528

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokmen, B., Armstrong, L.E., Kraemer, W.J., Casa, D.J., Dias, J.C., Judelson, D.A., & Maresh, C.M. (2008). Caffeine use in sports: Considerations for the athlete. Journal of Strength & Conditioning Research, 22, 978986. PubMed ID: 18438212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Somogyi, L.P. (2012). New caffeine report shows no measurable change in consumption trends of the U.S. population. Retrieved from www.fda.gov/

    • Search Google Scholar
    • Export Citation
  • Verster, J.C., & Koenig, J. (2018). Caffeine intake and its sources: A review of national representative studies. Critical Reviews in Food Science and Nutrition, 58(8), 12501259. PubMed ID: 28605236 doi:10.1080/10408398.2016.1247252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Younger, J., Gandhi, V., Hubbard, E., & Mackey, S. (2012). Development of the Stanford Expectations of Treatment Scale (SETS): A tool for measuring patient outcome expectancy in clinical trials. Clinical Trials, 9(6), 767776. PubMed ID: 23169874 doi:10.1177/1740774512465064

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5563 1658 135
Full Text Views 940 81 16
PDF Downloads 1099 86 12