The Impact of Low Energy Availability on Nonexercise Activity Thermogenesis and Physical Activity Behavior in Recreationally Trained Adults

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Technical University of Munich
  • | 2 University of Education Upper Austria
  • | 3 University of Würzburg
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Energy availability describes the amount of dietary energy remaining for physiological functionality after the energy cost of exercise is deducted. The physiological and hormonal consequences of low energy availability (LEA) are well established, but the impact of LEA on physical activity behavior outside of exercise and, specifically, nonexercise activity thermogenesis (NEAT) has not been systematically examined. The authors conducted a secondary analysis of a repeated-measures crossover study in which recreationally trained young men (n = 6, 25 ± 1.0 years) underwent two 4-day conditions of LEA (15 kcal·kg fat-free mass−1 ·day−1) with and without endurance exercise (LEA + EX and LEA EX) and two energy-balanced control conditions (CON + EX and CON EX). The duration and intensity of physical activity outside of prescribed exercise were assessed using the SenseWear Pro3 armband. LEA did not alter NEAT (p = .41), nor time spent in moderate to vigorous (p = .20) and low-intensity physical activity (p = .17). However, time spent in low-intensity physical activity was lower in LEA + EX than LEA − EX (13.7 ± 0.3 vs. 15.2 ± 0.3 hr/day; p = .002). Short-term LEA does not seem to impact NEAT per se, but the way it is attained may impact physical activity behavior outside of exercise. As the participants expended similar amounts of energy during NEAT (900–1,300 kcal/day = 12.5–18.0 kcal·kg fat-free mass−1·day−1) and prescribed exercise bouts (15.0 kcal·kg fat-free mass−1·day−1), excluding it as a component of energy expenditure may skew the true energy available for physiological functionality in active populations.

Martin, Hofmann, and Koehler are with the Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany. Drenowatz is with the Division of Sport, Physical Activity and Health, University of Education Upper Austria, Linz, Austria. Wallmann-Sperlich is with the Institute for Sport Science, University of Würzburg, Würzburg, Germany. Sperlich is with Integrative and Experimental Exercise Science, University of Würzburg, Würzburg, Germany.

Koehler (karsten.koehler@tum.de) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (PDF 14 KB)
    • Supplementary Table 2 (PDF 183 KB)
  • Amaro-Gahete, F.J., Sanchez-Delgado, G., Alcantara, J.M.A., Martinez-Tellez, B., Acosta, F.M., Merchan-Ramirez, E., … Ruiz, J.R. (2019). Energy expenditure differences across lying, sitting, and standing positions in young healthy adults. PLoS One, 14(6), e0217029. PubMed ID: 31188863 doi:10.1371/journal.pone.0217029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Areta, J.L., Taylor, H.L., & Koehler, K. (2020). Low energy availability: History, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. European Journal of Applied Physiology. 121(1), 121. doi:10.1007/s00421-020-04516-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arvidsson, D., Fridolfsson, J., & Borjesson, M. (2019). Measurement of physical activity in clinical practice using accelerometers. The Journal of Internal Medicine, 286(2), 137153. PubMed ID: 30993807 doi:10.1111/joim.12908

    • Search Google Scholar
    • Export Citation
  • Camps, S.G., Verhoef, S.P., & Westerterp, K.R. (2013). Weight loss, weight maintenance, and adaptive thermogenesis. The American Journal of Clinical Nutrition, 97(5), 990994. doi:10.3945/ajcn.112.050310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, J.J. (1991). Body composition as a determinant of energy expenditure: A synthetic review and a proposed general prediction equation. The American Journal of Clinical Nutrition, 54(6), 963969. doi:10.1093/ajcn/54.6.963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Pauw, K., Roelands, B., Cheung, S.S., de Geus, B., Rietjens, G., & Meeusen, R. (2013). Guidelines to classify subject groups in sport-science research. The International Journal of Sports Physiology and Performance, 8(2), 111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Souza, M.J., Nattiv, A., Joy, E., Misra, M., Williams, N.I., Mallinson, R.J., … Matheson, G. (2014). 2014 Female Athlete Triad coalition consensus statement on treatment and return to play of the Female Athlete Triad: 1st international conference held in San Francisco, California, May 2012 and 2nd international conference held in Indianapolis, Indiana, May 2013. The British Journal of Sports Medicine, 48(4), 289. PubMed ID: 24463911 doi:10.1136/bjsports-2013-093218

    • Search Google Scholar
    • Export Citation
  • Doucet, E., McInis, K., & Mahmoodianfard, S. (2018). Compensation in response to energy deficits induced by exercise or diet. Obesity Reviews, 19(Suppl. 1), 3646. doi:10.1111/obr.12783

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drenowatz, C., Eisenmann, J.C., Pivarnik, J.M., Pfeiffer, K.A., & Carlson, J.J. (2013). Differences in energy expenditure between high- and low-volume training. European Journal of Sport Science, 13(4), 422430. PubMed ID: 23834549 doi:10.1080/17461391.2011.635707

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastin, P.B., Cayzer, C., Dwyer, D., & Robertson, S. (2018). Validity of the ActiGraph GT3X+ and BodyMedia SenseWear Armband to estimate energy expenditure during physical activity and sport. The Journal of Science and Medicine in Sport, 21(3), 291295. PubMed ID: 28797831 doi:10.1016/j.jsams.2017.07.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guebels, C.P., Kam, L.C., Maddalozzo, G.F., & Manore, M.M. (2014). Active women before/after an intervention designed to restore menstrual function: resting metabolic rate and comparison of four methods to quantify energy expenditure and energy availability. The International Journal of Sport Nutrition and Exercise Metabolism, 24(1), 3746. PubMed ID: 23918617 doi:10.1123/ijsnem.2012-0165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilton, L.K., & Loucks, A.B. (2000). Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. American Journal of Physiology—Endocrinology and Metabolism, 278(1), E4349. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10644535

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, G.R., Fisher, G., Neumeier, W.H., Carter, S.J., & Plaisance, E.P. (2015). Exercise training and energy expenditure following weight loss. Medicine & Science in Sports & Exercise, 47(9), 19501957. PubMed ID: 25606816 doi:10.1249/mss.0000000000000622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ihle, R., & Loucks, A.B. (2004). Dose-response relationships between energy availability and bone turnover in young exercising women. Journal of Bone and Mineral Research, 19(8), 12311240. doi:10.1359/JBMR.040410

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keys, A., Brozen, J., Henschel, A., Mickelson, O., & Taylor, H.L. (1950). The biology of human starvation. Minneapolis, MN: The University of Minnesota Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koehler, K., & Drenowatz, C. (2017). Monitoring energy expenditure using a multi-sensor device—Applications and limitations of the SenseWear armband in athletic populations. Frontiers in Physiology, 8(983), 983. doi:10.3389/fphys.2017.00983

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koehler, K., Hoerner, N.R., Gibbs, J.C., Zinner, C., Braun, H., De Souza, M.J., & Schaenzer, W. (2016a). Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. Journal of sports sciences, 34(20), 19211929. doi:10.1080/02640414.2016.1142109

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koehler, K., Williams, N.I., Mallinson, R.J., Southmayd, E.A., Allaway, H.C., & De Souza, M.J. (2016b). Low resting metabolic rate in exercise-associated amenorrhea is not due to a reduced proportion of highly active metabolic tissue compartments. American Journal of Physiology—Endocrinology and Metabolism, 311(2), E480487. doi:10.1152/ajpendo.00110.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaForgia, J., Withers, R.T., & Gore, C.J. (2006). Effects of exercise intensity and duration on the excess post-exercise oxygen consumption. Journal of sports sciences, 24(12), 12471264. PubMed ID: 17101527 doi:10.1080/02640410600552064

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, J.A. (2007). Nonexercise activity thermogenesis--liberating the life-force. The Journal of Internal Medicine, 262(3), 273287. PubMed ID: 17697152 doi:10.1111/j.1365-2796.2007.01842.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, J.A., Eberhardt, N.L., & Jensen, M.D. (1999). Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science, 283(5399), 212214. PubMed ID: 9880251 doi:10.1126/science.283.5399.212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lieberman, J.L., Mary Jane, D.E.S., Wagstaff, D.A., & Williams, N.I. (2018). Menstrual disruption with exercise is not linked to an energy availability threshold. Medicine & Science in Sports & Exercise, 50(3), 551561. PubMed ID: 29023359 doi:10.1249/mss.0000000000001451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., & Heath, E.M. (1994). Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. The American Journal of Physiology, 266(3, Pt. 2), R817823. PubMed ID: 8160876 doi:10.1152/ajpregu.1994.266.3.R817

    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., & Horvath, S.M. (1985). Athletic amenorrhea: A review. Medicine & Science in Sports & Exercise, 17(1), 5672. PubMed ID: 3920472

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., Kiens, B., & Wright, H.H. (2011). Energy availability in athletes. Journal of Sports Sciences, 29(Suppl. 1), S715. doi:10.1080/02640414.2011.588958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., & Thuma, J.R. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. The Journal of Clinical Endocrinology and Metabolism, 88(1), 297311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melanson, E.L. (2017). The effect of exercise on non-exercise physical activity and sedentary behavior in adults. Obesity Reviews, 18(Suppl. 1), 4049. doi:10.1111/obr.12507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountjoy, M., Sundgot-Borgen, J., Burke, L., Ackerman, K. E., Blauwet, C., Constantini, N., … Budgett, R. (2018). International Olympic Committee (IOC) consensus statement on Relative Energy Deficiency in Sport (RED-S): 2018 update. The International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 316331. PubMed ID: 29771168 doi:10.1123/ijsnem.2018-0136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountjoy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C., … Ljungqvist, A. (2014). The IOC consensus statement: Beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). British Journal of Sports Medicine, 48(7), 491497. doi:10.1136/bjsports-2014-093502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papageorgiou, M., Elliott-Sale, K.J., Parsons, A., Tang, J.C.Y., Greeves, J.P., Fraser, W.D., & Sale, C. (2017). Effects of reduced energy availability on bone metabolism in women and men. Bone, 105, 191199. PubMed ID: 28847532 doi:10.1016/j.bone.2017.08.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, S., Askew, C.D., Brümmer, V., Kleinert, J., Guardiera, S., Abel, T., & Strüder, H. K. (2009). The effect of parabolic flight on perceived physical, motivational and psychological state in men and women: Correlation with neuroendocrine stress parameters and electrocortical activity. Stress, 12(4), 336349. PubMed ID: 19006009 doi:10.1080/10253890802499175

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperlich, B., Becker, M., Hotho, A., Wallmann-Sperlich, B., Sareban, M., Winkert, K., … Treff, G. (2017). Sedentary behavior among national elite rowers during off-training-a pilot study. Frontiers in Physiology, 8, 655. doi:10.3389/fphys.2017.00655

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St-Onge, M., Mignault, D., Allison, D.B., & Rabasa-Lhoret, R. (2007). Evaluation of a portable device to measure daily energy expenditure in free-living adults. The American Journal of Clinical Nutrition, 85(3), 742749. doi:10.1093/ajcn/85.3.742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tenforde, A.S., Barrack, M.T., Nattiv, A., & Fredericson, M. (2016). Parallels with the female athlete triad in male athletes. Sports Medicine, 46(2), 171182. PubMed ID: 26497148 doi:10.1007/s40279-015-0411-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, J., & Manore, M.M. (1996). Predicted and measured resting metabolic rate of male and female endurance athletes. Journal of the American Dietetic Association, 96(1), 3034. PubMed ID: 8537566 doi:10.1016/s0002-8223(96)00010-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torstveit, M.K., Fahrenholtz, I., Stenqvist, T.B., Sylta, O., & Melin, A. (2018). Within-day energy deficiency and metabolic perturbation in male endurance athletes. The International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 419427. PubMed ID: 29405793 doi:10.1123/ijsnem.2017-0337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • US Department of Health and Human Services (2008 ). 2008 Physical activity guidelines for Americans. Retrieved from https://health.gov/sites/default/files/2019-09/paguide.pdf

    • Search Google Scholar
    • Export Citation
  • Verdich, C., Toubro, S., Buemann, B., Holst, J.J., Bulow, J., Simonsen, L., … Astrup, A. (2001). Leptin levels are associated with fat oxidation and dietary-induced weight loss in obesity. Obesity Research, 9(8), 452461. PubMed ID: 11500525 doi:10.1038/oby.2001.59

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welk, G.J., McClain, J.J., Eisenmann, J.C., & Wickel, E.E. (2007). Field validation of the MTI Actigraph and BodyMedia armband monitor using the IDEEA monitor. Obesity, 15(4), 918928. doi:10.1038/oby.2007.624

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 519 519 76
Full Text Views 150 150 7
PDF Downloads 76 76 11