Acute Effects of Dietary Nitrate on Exercise Tolerance, Muscle Oxygenation, and Cardiovascular Function in Patients With Peripheral Arterial Disease

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Maastricht University Medical Centre
  • | 2 HAN University of Applied Sciences
  • | 3 Radboud University Medical Center
  • | 4 Radboudumc
  • | 5 Liverpool John Moores University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Previous studies have used supplements to increase dietary nitrate intake in clinical populations. Little is known about whether effects can also be induced through vegetable consumption. Therefore, the aim of this study was to assess the impact of dietary nitrate, through nitrate-rich vegetables (NRV) and beetroot juice (BRJ) supplementation, on plasma nitrate and nitrite concentrations, exercise tolerance, muscle oxygenation, and cardiovascular function in patients with peripheral arterial disease. In a randomized crossover design, 18 patients with peripheral arterial disease (age: 73 ± 8 years) followed a nitrate intake protocol (∼6.5 mmol) through the consumption of NRV, BRJ, and nitrate-depleted BRJ (placebo). Blood samples were taken, blood pressure and arterial stiffness were measured in fasted state and 150 min after intervention. Each intervention was followed by a maximal walking exercise test to determine claudication onset time and peak walking time. Gastrocnemius oxygenation was measured by near-infrared spectroscopy. Blood samples were taken and blood pressure was measured 10 min after exercise. Mean plasma nitrate and nitrite concentrations increased (nitrate; Time × Intervention interaction; p < .001), with the highest concentrations after BRJ (494 ± 110 μmol/L) compared with NRV (202 ± 89 μmol/L) and placebo (80 ± 19 μmol/L; p < .001). Mean claudication onset time and peak walking time did not differ between NRV (413 ± 187 s and 745 ± 220 s, respectively), BRJ (392 ± 154 s and 746 ± 176 s), and placebo (403 ± 176 s and 696 ± 222 s) (p = .762 and p = .165, respectively). Gastrocnemius oxygenation, blood pressure, and arterial stiffness were not affected by the intervention. NRV and BRJ intake markedly increase plasma nitrate and nitrite, but this does not translate to improved exercise tolerance, muscle oxygenation, and/or cardiovascular function.

van der Avoort, van Loon, and Verdijk are with the NUTRIM, the School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands. van der Avoort and van Loon are also with the Institute of Sport and Exercise Studies, HAN University of Applied Sciences, Nijmegen, Gelderland, The Netherlands. van der Avoort, Thijssen, and Hopman are also with the Department of Physiology, Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands. Poyck is with the Department of Vascular and Transplant Surgery, Radboudumc, Nijmegen, Gelderland, The Netherlands. Thijssen is also with the Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.

van der Avoort (cindy.vanderavoort@han.nl) is corresponding author.

Supplementary Materials

    • Supplemental Table 1 (PDF 185 KB)
  • Aboyans, V., Criqui, M.H., Abraham, P., Allison, M.A., Creager, M.A., Diehm, C., . . . Lacroix, P. (2012). Measurement and interpretation of the ankle-brachial index: A scientific statement from the American Heart Association. Circulation, 126(24), 28902909. PubMed ID: 23159553 doi:10.1161/CIR.0b013e318276fbcb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvares, T.S., Meirelles, C.M., Bhambhani, Y.N., Paschoalin, V.M., & Gomes, P.S. (2011). L-Arginine as a potential ergogenic aidin healthy subjects. Sports Medicine, 41(3), 233248. PubMed ID: 21395365 doi:10.2165/11538590-000000000-0000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrade, V., Sertório, J., Eleuterio, N., Tanus-Santos, J.E., Fernandes, K., & Sandrim, V. (2013). Simvastatin treatment increases nitrite levels in obese women: Modulation by T−786C polymorphism of eNOS. Nitric Oxide, 33, 8387. PubMed ID: 23876348 doi:10.1016/j.niox.2013.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashworth, A., Mitchell, K., Blackwell, J.R., Vanhatalo, A., & Jones, A.M. (2015). High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women. Public Health Nutrition, 18(14), 26692678. PubMed ID: 25683748 doi:10.1017/S1368980015000038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, S.J., Blackwell, J.R., Wylie, L.J., Holland, T., Winyard, P.G., & Jones, A.M. (2016). Improvement in blood pressure after short-term inorganic nitrate supplementation is attenuated in cigarette smokers compared to non-smoking controls. Nitric Oxide, 61, 2937. PubMed ID: 27744007 doi:10.1016/j.niox.2016.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, S.J., Fulford, J., Vanhatalo, A., Winyard, P.G., Blackwell, J.R., DiMenna, F.J., . . . Jones, A.M. (2010). Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. Journal of Applied Physiology, 109(1), 135148. PubMed ID: 20466802 doi:10.1152/japplphysiol.00046.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, S.J., Winyard, P., Vanhatalo, A., Blackwell, J.R., DiMenna, F.J., Wilkerson, D.P., . . . Jones, A.M. (2009). Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. Journal of Applied Physiology, 107(4), 11441155. PubMed ID: 19661447 doi:10.1152/japplphysiol.00722.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beijers, R.J., Huysmans, S.M., van de Bool, C., Kingma, B.R., Verdijk, L.B., van Loon, L.J., . . . Schols, A.M. (2018). The effect of acute and 7-days dietary nitrate on mechanical efficiency, exercise performance and cardiac biomarkers in patients with chronic obstructive pulmonary disease. Clinical Nutrition, 37(6), 18521861. doi:10.1016/j.clnu.2017.10.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, M.J., Justus, N.W., Hauser, J.I., Case, A.H., Helms, C.C., Basu, S., . . . Miller, G.D. (2015). Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients. Nitric Oxide, 48, 2230. PubMed ID: 25445634 doi:10.1016/j.niox.2014.10.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bock, J.M., Treichler, D.P., Norton, S.L., Ueda, K., Hughes, W.E., & Casey, D.P. (2018). Inorganic nitrate supplementation enhances functional capacity and lower-limb microvascular reactivity in patients with peripheral artery disease. Nitric Oxide, 80, 4551. PubMed ID: 30118808 doi:10.1016/j.niox.2018.08.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bondonno, C.P., Croft, K.D., & Hodgson, J.M. (2016). Dietary nitrate, nitric oxide, and cardiovascular health. Critical Reviews in Food Science and Nutrition, 56(12), 20362052. PubMed ID: 25976309 doi:10.1080/10408398.2013.811212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bondonno, C.P., Liu, A.H., Croft, K.D., Ward, N.C., Yang, X., Considine, M.J., . . . Hodgson, J.M. (2014). Short-term effects of nitrate-rich green leafy vegetables on blood pressure and arterial stiffness in individuals with high-normal blood pressure. Free Radical Biology and Medicine, 77, 353362. PubMed ID: 25261227 doi:10.1016/j.freeradbiomed.2014.09.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breese, B.C., McNarry, M.A., Marwood, S., Blackwell, J.R., Bailey, S.J., & Jones, A.M. (2013). Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 305(12), R1441R1450. PubMed ID: 24089377 doi:10.1152/ajpregu.00295.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, J.M., Ingwersen, L.A., Vinyard, B.T., & Moshfegh, A.J. (2003). Effectiveness of the US department of agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. The American Journal of Clinical Nutrition, 77(5), 11711178. PubMed ID: 12716668 doi:10.1093/ajcn/77.5.1171

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, C.E., & Giulivi, C. (2007). Nitric oxide regulation of mitochondrial oxygen consumption II: Molecular mechanism and tissue physiology. American Journal of Physiology—Cell Physiology, 292(6), C1993C2003. PubMed ID: 17329402 doi:10.1152/ajpcell.00310.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, S.-T., Zhang, Y.-S., & Lin, X.-Y. (2007). Accumulation of nitrate in vegetables and its possible implications to human health. Agricultural Sciences in China, 6(10), 12461255. doi:10.1016/S1671-2927(07)60169-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, A., Meek, J.H., Clemence, M., Elwell, C.E., Tyszczuk, L., Cope, M., & Delpy, D. (1995). Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Physics in Medicine and Biology, 40(2), 295. PubMed ID: 7708855 doi:10.1088/0031-9155/40/2/007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eggebeen, J., Kim-Shapiro, D.B., Haykowsky, M., Morgan, T.M., Basu, S., Brubaker, P., . . . Kitzman, D.W. (2016). One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction. JACC: Heart Failure, 4(6), 428437. PubMed ID: 26874390

    • Search Google Scholar
    • Export Citation
  • Gallardo, E.J., Gray, D.A., Hoffman, R.L., Yates, B.A., Moorthi, R.N., & Coggan, A.R. (2020). Dose-response effect of dietary nitrate on muscle contractility and blood pressure in older subjects. medRxiv. Retrieved from https://www.medrxiv.org/content/medrxiv/early/2020/06/02/2020.05.29.20117218.full.pdf

    • Search Google Scholar
    • Export Citation
  • Gardner, A.W., Bright, B.C., Ort, K.A., & Montgomery, P.S. (2011). Dietary intake of participants with peripheral artery disease and claudication. Angiology, 62(3), 270275. PubMed ID: 21406424 doi:10.1177/0003319710384395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilchrist, M., Winyard, P.G., Aizawa, K., Anning, C., Shore, A., & Benjamin, N. (2013). Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radical Biology and Medicine, 60, 8997. PubMed ID: 23395779 doi:10.1016/j.freeradbiomed.2013.01.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govoni, M., Jansson, E.Å., Weitzberg, E., & Lundberg, J.O. (2008). The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide, 19(4), 333337. PubMed ID: 18793740 doi:10.1016/j.niox.2008.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamburg, N.M., & Creager, M.A. (2017). Pathophysiology of intermittent claudication in peripheral artery disease. Circulation Journal, 81(3), 281289. PubMed ID: 28123169 doi:10.1253/circj.CJ-16-1286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirai, D.M., Zelt, J.T., Jones, J.H., Castanhas, L.G., Bentley, R.F., Earle, W., . . . O’Donnell, D.E. (2016). Dietary nitrate supplementation and exercise tolerance in patients with heart failure with reduced ejection fraction. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 312(1), R13R22. PubMed ID: 27784687 doi:10.1152/ajpregu.00263.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horiuchi, M., Endo, J., Dobashi, S., Handa, Y., Kiuchi, M., & Koyama, K. (2017). Muscle oxygenation profiles between active and inactive muscles with nitrate supplementation under hypoxic exercise. Physiological Reports, 5(20), e13475. PubMed ID: 29066597 doi:10.14814/phy2.13475

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A.M., Thompson, C., Wylie, L.J., & Vanhatalo, A. (2018). Dietary nitrate and physical performance. Annual Review of Nutrition, 38(1), 303328. PubMed ID: 30130468 doi:10.1146/annurev-nutr-082117-051622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, B., Dat, M., & Cooper, C.E. (2014). Underwater near-infrared spectroscopy measurements of muscle oxygenation: Laboratory validation and preliminary observations in swimmers and triathletes. Journal of Biomedical Optics, 19(12), 127002. PubMed ID: 25478871 doi:10.1117/1.JBO.19.12.127002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonvik, K.L., Nyakayiru, J., Pinckaers, P.J., Senden, J.M., van Loon, L.J., & Verdijk, L.B. (2016a). Nitrate-rich vegetables increase plasma nitrate and nitrite concentrations and lower blood pressure in healthy adults. The Journal of Nutrition, 146(5), 986993. PubMed ID: 27075914 doi:10.3945/jn.116.229807

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonvik, K.L., Nyakayiru, J., Van Dijk, J.-W., Wardenaar, F.C., Van Loon, L.J., & Verdijk, L.B. (2016b). Habitual dietary nitrate intake in highly trained athletes. International Journal of Sport Nutrition and Exercise Metabolism, 27(2), 148157. doi:10.1123/ijsnem.2016-0239

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenjale, A.A., Ham, K.L., Stabler, T., Robbins, J.L., Johnson, J.L., VanBruggen, M., . . . Allen, J.D. (2011). Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. Journal of Applied Physiology, 110(6), 15821591. PubMed ID: 21454745 doi:10.1152/japplphysiol.00071.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D.J.-K., Roe, C.A., Somani, Y.B., Moore, D.J., Barrett, M.A., Flanagan, M., . . . Proctor, D.N. (2019). Effects of acute dietary nitrate supplementation on aortic blood pressures and pulse wave characteristics in post-menopausal women. Nitric Oxide, 85, 1016. PubMed ID: 30668996 doi:10.1016/j.niox.2019.01.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauer, T., Heiss, C., Balzer, J., Kehmeier, E., Mangold, S., Leyendecker, T., . . . Kelm, M. (2008). Age-dependent endothelial dysfunction is associated with failure to increase plasma nitrite in response to exercise. Basic Research in Cardiology, 103(3), 291297. PubMed ID: 18347836 doi:10.1007/s00395-008-0714-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundberg, J.O., Weitzberg, E., Cole, J.A., & Benjamin, N. (2004). Nitrate, bacteria and human health. Nature Reviews Microbiology, 2(7), 593602. PubMed ID: 15197394 doi:10.1038/nrmicro929

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madigan, M., & Zuckerbraun, B. (2013). Therapeutic potential of the nitrite-generated NO pathway in vascular dysfunction. Frontiers in Immunology, 4, 174. PubMed ID: 23847616 doi:10.3389/fimmu.2013.00174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maessen, M.F., Eijsvogels, T.M., Grotens, A., Hopman, M.T., Thijssen, D.H., & Hansen, H.H. (2017). Feasibility and relevance of compound strain imaging in non-stenotic arteries: Comparison between individuals with cardiovascular diseases and healthy controls. Cardiovascular Ultrasound, 15(1), 13. PubMed ID: 28521772 doi:10.1186/s12947-017-0104-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Natarajan, T.D., Ramasamy, J.R., & Palanisamy, K. (2019). Nutraceutical potentials of synergic foods: A systematic review. Journal of Ethnic Foods, 6(1), 17. doi:10.1186/s42779-019-0033-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolaï, S.P., Viechtbauer, W., Kruidenier, L.M., Candel, M.J., Prins, M.H., & Teijink, J.A. (2009). Reliability of treadmill testing in peripheral arterial disease: A meta-regression analysis. Journal of Vascular Surgery, 50(2), 322329. PubMed ID: 19631868 doi:10.1016/j.jvs.2009.01.042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omar, S., Webb, A., Lundberg, J., & Weitzberg, E. (2016). Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. Journal of Internal Medicine, 279(4), 315336. PubMed ID: 26522443 doi:10.1111/joim.12441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pautz, A., Art, J., Hahn, S., Nowag, S., Voss, C., & Kleinert, H. (2010). Regulation of the expression of inducible nitric oxide synthase. Nitric oxide, 23(2), 7593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pescatello, L.S., Arena R., Riebe, D., & Thompson, P.D. (2014). ACSM’s guidelines for exercise testing and prescription. Philadelphia, PA: Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • Ramesh, G., Varma, J., Ganguly, N., Dhawan, V., Bali, H., & Singh, M. (1999). Increased plasma nitrite level in cardiac failure. Journal of Molecular and Cellular Cardiology, 31(8), 14951500. PubMed ID: 10423347 doi:10.1006/jmcc.1999.0982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regimbal, R., Senefeld, J., Wiggins, C., Dominelli, P., Baker, S., & Joyner, M. (2020). Nitrate supplementation enhances exercise performance: A systematic review and meta‐analysis. The FASEB Journal, 34(Suppl. 1), 11. doi:10.1096/fasebj.2020.34.s1.00105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, T.E., Erickson, M.L., Brizendine, J.T., Young, H.-J., & McCully, K.K. (2012). Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: Correcting for blood volume changes. Journal of Applied Physiology, 113(2), 175183. PubMed ID: 22582211 doi:10.1152/japplphysiol.00319.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneeman, B.O. (2002). Gastrointestinal physiology and functions. British Journal of Nutrition, 88(Suppl. 2), S159S163. doi:10.1079/BJN2002681

  • Shepherd, A.I., Gilchrist, M., Winyard, P.G., Jones, A.M., Hallmann, E., Kazimierczak, R., . . . Wilkerson, D.P. (2015). Effects of dietary nitrate supplementation on the oxygen cost of exercise and walking performance in individuals with type 2 diabetes: A randomized, double-blind, placebo-controlled crossover trial. Free Radical Biology and Medicine, 86, 200208. PubMed ID: 25998421 doi:10.1016/j.freeradbiomed.2015.05.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siervo, M., Lara, J., Jajja, A., Sutyarjoko, A., Ashor, A., Brandt, K., . . . Winyard, P.G. (2015). Ageing modifies the effects of beetroot juice supplementation on 24-hour blood pressure variability: An individual participant meta-analysis. Nitric Oxide, 47, 97105. PubMed ID: 25937622 doi:10.1016/j.niox.2015.04.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C.J., Santhanam, L., Bruning, R.S., Stanhewicz, A., Berkowitz, D.E., & Holowatz, L.A. (2011). Upregulation of inducible nitric oxide synthase contributes to attenuated cutaneous vasodilation in essential hypertensive humans. Hypertension, 58(5), 935942. PubMed ID: 21931069 doi:10.1161/HYPERTENSIONAHA.111.178129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamler, J.S., & Meissner, G. (2001). Physiology of nitric oxide in skeletal muscle. Physiological Reviews, 81(1), 209237. PubMed ID: 11152758 doi:10.1152/physrev.2001.81.1.209

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanaway, L., Rutherfurd-Markwick, K., Page, R., & Ali, A. (2017). Performance and health benefits of dietary nitrate supplementation in older adults: A systematic review. Nutrients, 9(11), 1171. doi:10.3390/nu9111171

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szuba, A., Oka, R.K., Harada, R., & Cooke, J.P. (2006). Limb hemodynamics are not predictive of functional capacity in patients with PAD. Vascular Medicine, 11(3), 155163. PubMed ID: 17288121 doi:10.1177/1358863x06074828

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Beekvelt, M.C., Colier, W.N., Wevers, R.A., & Van Engelen, B.G. (2001). Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle. Journal of Applied Physiology, 90(2), 511519. PubMed ID: 11160049 doi:10.1152/jappl.2001.90.2.511

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Avoort, C., Jonvik, K., Nyakayiru, J., van Loon, L., Hopman, M., & Verdijk, L. (2020). A nitrate-rich vegetable intervention elevates plasma nitrate and nitrite concentrations and reduces blood pressure in healthy young adults. Journal of the Academy of Nutrition and Dietetics, 120(8), 13051317. PubMed ID: 32386891 doi:10.1016/j.jand.2020.02.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, A.J., Patel, N., Loukogeorgakis, S., Okorie, M., Aboud, Z., Misra, S., . . . Benjamin, N. (2008). Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension, 51(3), 784790. PubMed ID: 18250365 doi:10.1161/HYPERTENSIONAHA.107.103523

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkerson, D.P., Hayward, G.M., Bailey, S.J., Vanhatalo, A., Blackwell, J.R., & Jones, A.M. (2012). Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. European Journal of Applied Physiology, 112(12), 41274134. PubMed ID: 22526247 doi:10.1007/s00421-012-2397-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woessner, M., VanBruggen, M.D., Pieper, C.F., Sloane, R., Kraus, W.E., Gow, A.J., & Allen, J.D. (2018). Beet the best? Dietary inorganic nitrate to augment exercise training in lower extremity peripheral artery disease with intermittent claudication. Circulation Research, 123(6), 654659. PubMed ID: 29976553 doi:10.1161/CIRCRESAHA.118.313131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woessner, M.N., McIlvenna, L.C., de Zevallos, J.O., Neil, C., & Allen, J.D. (2017). Dietary nitrate supplementation in cardiovascular health: An ergogenic aid or exercise therapeutic? American Journal of Physiology—Heart and Circulatory Physiology, 314(2), H195H212. doi:10.1152/ajpheart.00414.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wylie, L.J., Kelly, J., Bailey, S.J., Blackwell, J.R., Skiba, P.F., Winyard, P.G., . . . Jones, A.M. (2013). Beetroot juice and exercise: Pharmacodynamic and dose-response relationships. Journal of Applied Physiology, 115(3), 325336. PubMed ID: 23640589 doi:10.1152/japplphysiol.00372.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamani, P., Rawat, D., Shiva-Kumar, P., Geraci, S., Bhuva, R., Konda, P., . . . Margulies, K.B. (2015). Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation, 131(4), 371380. PubMed ID: 25533966 doi:10.1161/CIRCULATIONAHA.114.012957

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 760 760 474
PDF Downloads 552 552 369