Implication of Blood Rheology and Pulmonary Hemodynamics on Exercise-Induced Hypoxemia at Sea Level and Altitude in Athletes

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Université de Perpignan Via Domitia
  • | 2 Université Claude Bernard Lyon 1
  • | 3 PRES Sorbonne
  • | 4 Hospital Universitario German Trias i Pujol
  • | 5 Université de Lille
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

This study aimed to investigate the changes in blood viscosity, pulmonary hemodynamics, nitric oxide (NO) production, and maximal oxygen uptake (V˙O2max) during a maximal incremental test conducted in normoxia and during exposure to moderate altitude (2,400 m) in athletes exhibiting exercise-induced hypoxemia at sea level (EIH). Nine endurance athletes with EIH and eight without EIH (NEIH) performed a maximal incremental test under three conditions: sea level, 1 day after arrival in hypoxia, and 5 days after arrival in hypoxia (H5) at 2,400 m. Gas exchange and oxygen peripheral saturation (SpO2) were continuously monitored. Cardiac output, pulmonary arterial pressure, and total pulmonary vascular resistance were assessed by echocardiography. Venous blood was sampled before and 3 min after exercise cessation to analyze blood viscosity and NO end-products. At sea level, athletes with EIH exhibited an increase in blood viscosity and NO levels during exercise while NEIH athletes showed no change. Pulmonary hemodynamics and aerobic performance were not different between the two groups. No between-group differences in blood viscosity, pulmonary hemodynamics, and V˙O2max were found at 1 day after arrival in hypoxia. At H5, lower total pulmonary vascular resistance and greater NO concentration were reported in response to exercise in EIH compared with NEIH athletes. EIH athletes had greater cardiac output and lower SpO2 at maximal exercise in H5, but no between-group differences occurred regarding blood viscosity and V˙O2max. The pulmonary vascular response observed at H5 in EIH athletes may be involved in the greater cardiac output of EIH group and counterbalanced the drop in SpO2 in order to achieve similar V˙O2max than NEIH athletes.

Raberin, Meric, and Durand are with the Laboratoire Européen Performance Santé Altitude (LEPSA), Université de Perpignan Via Domitia, Font Romeu, Perpignan, France. Nader, Pialoux, and Connes are with the Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, Auvergne-Rhône-Alpes, France; and the Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France. Lopez Ayerbe is with the Hospital Universitario German Trias i Pujol, Badalona, Catalunya, Spain. Mucci is with the ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, Lille, France. Meric and Durand are also with the Images Espace-Dev, Université de Peprignan Via Domitia, Font Romeu, Perpignan, France.

Raberin (antoine.raberin@gmail.com) is corresponding author.
  • Alis, R., Sanchis-Gomar, F., Ferioli, D., La Torre, A., Blesa, J.R., & Romagnoli, M. (2015). Exercise effects on erythrocyte deformability in exercise-induced arterial hypoxemia. International Journal of Sports Medicine, 36(4), 286291. doi:10.1055/s-0034-1394395

    • Search Google Scholar
    • Export Citation
  • Argiento, P., Vanderpool, R.R., Mulè, M., Russo, M.G., D’Alto, M., Bossone, E., . . . Naeije, R. (2012). Exercise stress echocardiography of the pulmonary circulation : Limits of normal and sex differences. Chest, 142(5), 11581165. doi:10.1378/chest.12-0071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baskurt, O.K. (Ed.). (2007). Handbook of hemorheology and hemodynamics. Amsterdam, The Netherlands: IOS Press.

  • Baskurt, O.K., & Meiselman, H.J. (2003). Blood rheology and hemodynamics. Seminars in Thrombosis and Hemostasis, 29(5), 435450. doi:10.1055/s-2003-44551

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caravita, S., Yerly, P., Baratto, C., Dewachter, C., Faini, A., Rimouche, A., . . . Vachiéry, J.-L. (2019). Noninvasive versus invasive pressure-flow relationship of the pulmonary circulation: Bias and error. The European Respiratory Journal, 54(5). doi:10.1183/13993003.00881-2019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claessen, G., La Gerche, A., Voigt, J.-U., Dymarkowski, S., Schnell, F., Petit, T., . . . Heidbuchel, H. (2016). Accuracy of echocardiography to evaluate pulmonary vascular and RV function during exercise. JACC Cardiovascular Imaging, 9(5), 532543. doi:10.1016/j.jcmg.2015.06.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connes, P., Bouix, D., Durand, F., Kippelen, P., Mercier, J., Prefaut, C., . . . Caillaud, C. (2004). Is hemoglobin desaturation related to blood viscosity in athletes during exercise? International Journal of Sports Medicine, 25(8), 569574. doi:10.1055/s-2004-821118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connes, P., Pichon, A., Hardy-Dessources, M.-D., Waltz, X., Lamarre, Y., Simmonds, M. J., & Tripette, J. (2012). Blood viscosity and hemodynamics during exercise. Clinical Hemorheology and Microcirculation, 51(2), 101109. doi:10.3233/CH-2011-1515

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Constantini, K., Tanner, D.A., Gavin, T.P., Harms, C.A., Stager, J.M., & Chapman, R.F. (2017). Prevalence of exercise-induced arterial hypoxemia in distance runners at sea level. Medicine and Science in Sports and Exercise, 49(5), 948954. doi:10.1249/MSS.0000000000001193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornolo, J., Mollard, P., Brugniaux, J.V., Robach, P., & Richalet, J.-P. (2004). Autonomic control of the cardiovascular system during acclimatization to high altitude : Effects of sildenafil. Journal of Applied Physiology, 97(3), 935940. doi:10.1152/japplphysiol.00239.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, F., Gaston, A.-F., Vicenzi, M., Deboeck, G., Subirats, E., & Faoro, V. (2020). Noninvasive pulmonary hemodynamic evaluation in athletes with exercise-induced hypoxemia. CHEST, 157(6), 15681578. PubMed ID: 32081649 doi:10.1016/j.chest.2020.01.037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, F., Mucci, P., Safont, L., & Prefaut, C. (1999). Effects of nitric oxide inhalation on pulmonary gas exchange during exercise in highly trained athletes. Acta Physiologica Scandinavica, 165(2), 169176. doi:10.1046/j.1365-201x.1999.00480.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eldridge, M.W., Dempsey, J.A., Haverkamp, H.C., Lovering, A.T., & Hokanson, J.S. (2004). Exercise-induced intrapulmonary arteriovenous shunting in healthy humans. Journal of Applied Physiology, 97(3), 797805. doi:10.1152/japplphysiol.00137.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faoro, V., Deboeck, G., Vicenzi, M., Gaston, A.-F., Simaga, B., Doucende, G., . . . Naeije, R. (2017). Pulmonary vascular function and aerobic exercise capacity at moderate altitude. Medicine and Science in Sports and Exercise, 49(10), 21312138. doi:10.1249/MSS.0000000000001320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forton, K., Motoji, Y., Deboeck, G., Faoro, V., & Naeije, R. (2016). Effects of body position on exercise capacity and pulmonary vascular pressure-flow relationships. Journal of Applied Physiology, 121(5), 11451150. doi:10.1152/japplphysiol.00372.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghofrani, H.A., Reichenberger, F., Kohstall, M.G., Mrosek, E.H., Seeger, T., Olschewski, H., . . . Grimminger, F. (2004). Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp : A randomized, double-blind, placebo-controlled crossover trial. Annals of Internal Medicine, 141(3), 169177. doi:10.7326/0003-4819-141-3-200408030-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, A.N.H., Mayo, J.R., & McKenzie, D.C. (2006). Pulmonary oedema following exercise in humans. Sports Medicine, 36(6), 501512. doi:10.2165/00007256-200636060-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, S.R., Olfert, I.M., & Wagner, P.D. (2009). Point:Counterpoint : Exercise-induced intrapulmonary shunting is imaginary vs. Real. Journal of Applied Physiology, 107(3), 993994. doi:10.1152/japplphysiol.91489.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovacs, G., Berghold, A., Scheidl, S., & Olschewski, H. (2009). Pulmonary arterial pressure during rest and exercise in healthy subjects : A systematic review. The European Respiratory Journal, 34(4), 888894. doi:10.1183/09031936.00145608

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lador, F., Tam, E., Azabji Kenfack, M., Cautero, M., Moia, C., Morel, D.R., . . . Ferretti, G. (2008). Phase I dynamics of cardiac output, systemic O2 delivery, and lung O2 uptake at exercise onset in men in acute normobaric hypoxia. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 295(2), R624R632. PubMed ID: 18495828 doi:10.1152/ajpregu.00797.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurie, S.S., Yang, X., Elliott, J.E., Beasley, K.M., & Lovering, A.T. (2010). Hypoxia-induced intrapulmonary arteriovenous shunting at rest in healthy humans. Journal of Applied Physiology, 109(4), 10721079. doi:10.1152/japplphysiol.00150.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovering, A.T., Eldridge, M.W., & Stickland, M.K. (2009). Counterpoint : Exercise-induced intrapulmonary shunting is real. Journal of Applied Physiology, 107(3), 994997. doi:10.1152/japplphysiol.91489.2008a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggiorini, M., Mélot, C., Pierre, S., Pfeiffer, F., Greve, I., Sartori, C., . . . Naeije, R. (2001). High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation, 103(16), 20782083. doi:10.1161/01.CIR.103.16.2078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, J.T., Vonk Noordegraaf, A., Roeleveld, R.J., Postmus, P.E., Heethaar, R.M., Van Rossum, A.C., & Boonstra, A. (2001). Impaired left ventricular filling due to right ventricular pressure overload in primary pulmonary hypertension : Noninvasive monitoring using MRI. Chest, 119(6), 17611765. doi:10.1378/chest.119.6.1761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, D., Powers, S., Cicale, M., Collop, N., Huang, D., & Criswell, D. (1992). Validity of pulse oximetry during exercise in elite endurance athletes. Journal of Applied Physiology, 72(2), 455458. doi:10.1152/jappl.1992.72.2.455

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misko, T.P., Schilling, R.J., Salvemini, D., Moore, W.M., & Currie, M.G. (1993). A fluorometric assay for the measurement of nitrite in biological samples. Analytical Biochemistry, 214(1), 1116. doi:10.1006/abio.1993.1449

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nader, E., Guillot, N., Lavorel, L., Hancco, I., Fort, R., Stauffer, E., . . . Connes, P. (2018). Eryptosis and hemorheological responses to maximal exercise in athletes : Comparison between running and cycling. Scandinavian Journal of Medicine & Science in Sports, 28(5), 15321540. doi:10.1111/sms.13059

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavelescu, A., Faoro, V., Guenard, H., de Bisschop, C., Martinot, J.-B., Mélot, C., & Naeije, R. (2013). Pulmonary vascular reserve and exercise capacity at sea level and at high altitude. High Altitude Medicine & Biology, 14(1), 1926. doi:10.1089/ham.2012.1073

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prefaut, C., Durand, F., Mucci, P., & Caillaud, C. (2000). Exercise-induced arterial hypoxaemia in athletes : A review. Sports Medicine, 30(1), 4761. doi:10.2165/00007256-200030010-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raberin, A., Meric, H., Mucci, P., Ayerbe, J.L., & Durand, F. (2019). Muscle and cerebral oxygenation during exercise in athletes with exercise-induced hypoxemia : A comparison between sea level and acute moderate hypoxia. European Journal of Sport Science, 20(6), 803812. doi:10.1080/17461391.2019.1669717

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raberin, A., Nader, E., Ayerbe, J.L., Mucci, P., Connes, P., & Durand, F. (2019). Evolution of blood rheology and its relationship to pulmonary hemodynamic during the first days of exposure to moderate altitude. Clinical Hemorheology and Microcirculation, 74(2), 201208. doi:10.3233/CH-190671

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raj, J.U., & Anderson, J. (1991). Erythrocyte deformability and lung segmental vascular resistance : Effect of hematocrit. Journal of Applied Physiology, 70(3), 13861392. doi:10.1152/jappl.1991.70.3.1386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salazar Vázquez, B.Y., Martini, J., Chávez Negrete, A., Tsai, A.G., Forconi, S., Cabrales, P., . . . Intaglietta, M. (2010). Cardiovascular benefits in moderate increases of blood and plasma viscosity surpass those associated with lowering viscosity : Experimental and clinical evidence. Clinical Hemorheology and Microcirculation, 44(2), 7585. doi:10.3233/CH-2010-1261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheel, A.W., Edwards, M.R., Hunte, G.S., & McKenzie, D.C. (2001). Influence of inhaled nitric oxide on gas exchange during normoxic and hypoxic exercise in highly trained cyclists. Journal of Applied Physiology, 90(3), 926932. doi:10.1152/jappl.2001.90.3.926

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, J.B., & Mathieu-Costello, O. (1995). Stress failure of pulmonary capillaries as a limiting factor for maximal exercise. European Journal of Applied Physiology and Occupational Physiology, 70(2), 99108.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 333 333 213
Full Text Views 96 96 52
PDF Downloads 52 52 36