Changes in Hydration Factors Over the Course of Heat Acclimation in Endurance Athletes

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Yasuki SekiguchiUniversity of Connecticut
Texas Tech University

Search for other papers by Yasuki Sekiguchi in
Current site
Google Scholar
PubMed
Close
*
,
Courteney L. BenjaminUniversity of Connecticut
Samford University

Search for other papers by Courteney L. Benjamin in
Current site
Google Scholar
PubMed
Close
*
,
Samantha O. DionUniversity of Connecticut

Search for other papers by Samantha O. Dion in
Current site
Google Scholar
PubMed
Close
*
,
Ciara N. ManningUniversity of Connecticut

Search for other papers by Ciara N. Manning in
Current site
Google Scholar
PubMed
Close
*
,
Jeb F. StruderUniversity of Connecticut

Search for other papers by Jeb F. Struder in
Current site
Google Scholar
PubMed
Close
*
,
Erin E. DierickxUniversity of Connecticut

Search for other papers by Erin E. Dierickx in
Current site
Google Scholar
PubMed
Close
*
,
Margaret C. MorrisseyUniversity of Connecticut

Search for other papers by Margaret C. Morrissey in
Current site
Google Scholar
PubMed
Close
*
,
Erica M. FilepUniversity of Connecticut

Search for other papers by Erica M. Filep in
Current site
Google Scholar
PubMed
Close
*
, and
Douglas J. CasaUniversity of Connecticut

Search for other papers by Douglas J. Casa in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The purpose of this study was to examine the effect of heat acclimation (HA) on thirst levels, sweat rate, and percentage of body mass loss (%BML), and changes in fluid intake factors throughout HA induction. Twenty-eight male endurance athletes (mean ± SD; age, 35 ± 12 years; body mass, 73.0 ± 8.9 kg; maximal oxygen consumption, 57.4 ± 6.8 ml·kg−1·min−1) completed 60 min of exercise in a euhydrated state at 58.9 ± 2.3% velocity of maximal oxygen consumption in the heat (ambient temperature, 35.0 ± 1.3 °C; relative humidity, 48.0 ± 1.3%) prior to and following HA where thirst levels, sweat rate, and %BML were measured. Then, participants performed 5 days of HA while held at hyperthermia (38.50–39.75 °C) for 60 min with fluid provided ad libitum. Sweat volume, %BML, thirst levels, and fluid intake were measured for each session. Thirst levels were significantly lower following HA (pre, 4 ± 1; post, 3 ± 1, p < .001). Sweat rate (pre, 1.76 ± 0.42 L/hr; post, 2.00 ± 0.60 L/hr, p = .039) and %BML (pre, 2.66 ± 0.53%; post, 2.98 ± 0.83%, p = .049) were significantly greater following HA. During HA, thirst levels decreased (Day 1, 4 ± 1; Day 2, 3 ± 2; Day 3, 3 ± 2; Day 4, 3 ± 1; Day 5, 3 ± 1; p < .001). However, sweat volume (Day 1, 2.34 ± 0.67 L; Day 2, 2.49 ± 0.58 L; Day 3, 2.67 ± 0.63 L; Day 4, 2.74 ± 0.61 L; Day 5, 2.74 ± 0.91 L; p = .010) and fluid intake (Day 1, 1.20 ± 0.45 L; Day 2, 1.52 ± 0.58 L; Day 3, 1.69 ± 0.63 L; Day 4, 1.65 ± 0.58 L; Day 5, 1.74 ± 0.51 L; p < .001) increased. In conclusion, thirst levels were lower following HA even though sweat rate and %BML were higher. Thirst levels decreased while sweat volume and fluid intake increased during HA induction. Thus, HA should be one of the factors to consider when planning hydration strategies.

Sekiguchi, Benjamin, Dion, Manning, Struder, Dierickx, Morrissey, Filep, and Casa are with the Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, USA. Benjamin is also with the Department of Kinesiology, Samford University, Birmingham, AL, USA. Sekiguchi is also with the Department of Kinesiology and Sport Management,Texas Tech University, Lubbock, TX, USA.

Sekiguchi (yasuki.sekiguchi@uconn.edu) is corresponding author.
  • Collapse
  • Expand
  • Adams, J.D., Scott, D.M., Brand, N.A., Suh, H.-G., Seal, A.D., McDermott, B.P., . . . Kavouras, S.A. (2019). Mild hypohydration impairs cycle ergometry performance in the heat: A blinded study. Scandinavian Journal of Medicine & Science in Sports, 29(5), 686695. PubMed ID: 30659665 doi:10.1111/sms.13386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, J.D., Sekiguchi, Y., Suh, H.-G., Seal, A.D., Sprong, C.A., Kirkland, T.W., & Kavouras, S.A. (2018). Dehydration impairs cycling performance, independently of thirst: A blinded study. Medicine & Science in Sports & Exercise, 50(8), 16971703. PubMed ID: 29509643 doi:10.1249/MSS.0000000000001597

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alhadad, S.B., Tan, P.M.S., & Lee, J.K.W. (2019). Efficacy of heat mitigation strategies on core temperature and endurance exercise: A meta-analysis. Frontiers in Physiology, 10, 71. PubMed ID: 30842739 doi:10.3389/fphys.2019.00071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, L.E. (2007). Assessing hydration status: The elusive gold standard. Journal of the American College of Nutrition, 26(Suppl. 5), 575S584S. doi:10.1080/07315724.2007.10719661

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, L.E., Costill, D.L., Fink, W.J., Bassett, D., Hargreaves, M., Nishibata, I., & King, D.S. (1985). Effects of dietary sodium on body and muscle potassium content during heat acclimation. European Journal of Applied Physiology and Occupational Physiology, 54(4), 391397. PubMed ID: 4065126 doi:10.1007/BF02337183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, L.E., & Kavouras, S.A. (2019). Thirst and drinking paradigms: Evolution from single factor effects to brainwide dynamic networks. Nutrients, 11(12), 2864. doi:10.3390/nu11122864

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, L.E., & Maresh, C.M. (1991). The induction and decay of heat acclimatisation in trained athletes. Sports Medicine, 12(5), 302312. doi:10.2165/00007256-199112050-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, L.E., Millard-Stafford, M., Moran, D.S., Pyne, S.W., & Roberts, W.O. (2007). American College of Sports Medicine position stand. Exertional heat illness during training and competition. Medicine & Science in Sports & Exercise, 39(3), 556572. PubMed ID: 17473783 doi:10.1249/MSS.0b013e31802fa199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bardis, C.N., Kavouras, S.A., Kosti, L., Markousi, M., & Sidossis, L.S. (2013). Mild hypohydration decreases cycling performance in the heat. Medicine & Science in Sports & Exercise, 45(9), 17821789. PubMed ID: 23470313 doi:10.1249/MSS.0b013e31828e1e77

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chalmers, S., Esterman, A., Eston, R., Bowering, K.J., & Norton, K. (2014). Short-term heat acclimation training improves physical performance: A systematic review, and exploration of physiological adaptations and application for team sports. Sports Medicine, 44(7), 971988. doi:10.1007/s40279-014-0178-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheuvront, S.N., Carter, R., Montain, S.J., & Sawka, M.N. (2004). Daily body mass variability and stability in active men undergoing exercise-heat stress. International Journal of Sport Nutrition and Exercise Metabolism, 14(5), 532540. PubMed ID: 15673099 doi:10.1123/ijsnem.14.5.532

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engell, D.B., Maller, O., Sawka, M.N., Francesconi, R.N., Drolet, L., & Young, A.J. (1987). Thirst and fluid intake following graded hypohydration levels in humans. Physiology & Behavior, 40(2), 229236. PubMed ID: 3306730 doi:10.1016/0031-9384(87)90212-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Figaro, M.K., & Mack, G.W. (1997). Regulation of fluid intake in dehydrated humans: Role of oropharyngeal stimulation. The American Journal of Physiology, 272(6), R1740R1746. doi:10.1152/ajpregu.1997.272.6.r1740

    • Search Google Scholar
    • Export Citation
  • Funnell, M.P., Mears, S.A., Bergin-Taylor, K., & James, L.J. (2019). Blinded and unblinded hypohydration similarly impair cycling time trial performance in the heat in trained cyclists. Journal of Applied Physiology, 126(4), 870879. doi:10.1152/japplphysiol.01026.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, A.T., Goosens, N.G., Rehrer, N.J., Patterson, M.J., Harrison, J., Sammut, I., & Cotter, J.D. (2014). Short-term heat acclimation is effective and may be enhanced rather than impaired by dehydration. American Journal of Human Biology: The Official Journal of the Human Biology Council, 26(3), 311320. doi:10.1002/ajhb.22509

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González-Alonso, J., Mora-Rodríguez, R., Below, P.R., & Coyle, E.F. (1995). Dehydration reduces cardiac output and increases systemic and cutaneous vascular resistance during exercise. Journal of Applied Physiology, 79(5), 14871496. doi:10.1152/jappl.1995.79.5.1487

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goulet, E.D.B. (2019). Comment on “Drinking strategies: Planned drinking versus drinking to thirst.” Sports Medicine, 49(4), 631633. doi:10.1007/s40279-018-0973-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hew-Butler, T., Verbalis, J.G., Noakes, T.D., & International Marathon Medical Directors Association. (2006). Updated fluid recommendation: Position statement from the International Marathon Medical Directors Association (IMMDA). Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine, 16(4), 283292. doi:10.1097/00042752-200607000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, W.G., Marshall, S.W., Batterham, A.M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 312. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W.-C., Tung, Y.-T., Wu, M.-S., Liu, M.-C., Lin, T.-J., & Yang, M.-T. (2020). Low-osmolality carbohydrate–electrolyte solution ingestion avoid fluid loss and oxidative stress after exhaustive endurance exercise. Antioxidants, 9(4), 336. doi:10.3390/antiox9040336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenefick, R.W. (2018). Drinking strategies: Planned drinking versus drinking to thirst. Sports Medicine, 48, 3137. doi:10.1007/s40279-017-0844-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenefick, R.W. (2019). Author’s reply to Goulet: Comment on: “Drinking strategies: Planned drinking versus drinking to thirst.” Sports Medicine, 49(4), 635636. doi:10.1007/s40279-018-0966-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGough, J.J., & Faraone, S.V. (2009). Estimating the size of treatment effects. Psychiatry, 6(10), 2129.

  • McKinley, M.J., & Johnson, A.K. (2004). The physiological regulation of thirst and fluid intake. Physiology, 19(1), 16. doi:10.1152/nips.01470.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudambo, K.S., Coutie, W., & Rennie, M.J. (1997). Plasma arginine vasopressin, atrial natriuretic peptide and brain natriuretic peptide responses to long-term field training in the heat: Effects of fluid ingestion and acclimatization. European Journal of Applied Physiology and Occupational Physiology, 75(3), 219225. PubMed ID: 9088840 doi:10.1007/s004210050151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuccio, R.P., Barnes, K.A., Carter, J.M., & Baker, L.B. (2017). Fluid balance in team sport athletes and the effect of hypohydration on cognitive, technical, and physical performance. Sports Medicine, 47(10), 19511982. PubMed ID: 28508338 doi:10.1007/s40279-017-0738-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ormerod, J.K., Elliott, T.A., Scheett, T.P., VanHeest, J.L., Armstrong, L.E., & Maresh, C.M. (2003). Drinking behavior and perception of thirst in untrained women during 6 weeks of heat acclimation and outdoor training. International Journal of Sport Nutrition and Exercise Metabolism, 13(1), 1528. PubMed ID: 12660403 doi:10.1123/ijsnem.13.1.15

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Périard, J.D., Racinais, S., & Sawka, M.N. (2015). Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scandinavian Journal of Medicine & Science in Sports, 25, 2038. doi:10.1111/sms.12408

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, J.L., Pryor, R.R., Vandermark, L.W., Adams, E.L., VanScoy, R.M., Casa, D.J., . . . Maresh, C.M. (2018). Intermittent exercise-heat exposures and intense physical activity sustain heat acclimation adaptations. Journal of Science and Medicine in Sport, 22(1), 117122. PubMed ID: 30554611 doi:10.1016/j.jsams.2018.06.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, D.J. (1989). The importance of thirst in maintenance of fluid balance. Bailliere’s Clinical Endocrinology and Metabolism, 3(2), 371391. PubMed ID: 2698142 doi:10.1016/S0950-351X(89)80008-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandick, B.L., Engell, D.B., & Maller, O. (1984). Perception of drinking water temperature and effects for humans after exercise. Physiology & Behavior, 32(5), 851855. PubMed ID: 6494291 doi:10.1016/0031-9384(84)90205-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawka, M.N., Burke, L.M., Eichner, E.R., Maughan, R.J., Montain, S.J., & Stachenfeld, N.S. (2007). American College of Sports Medicine position stand. Exercise and fluid replacement. Medicine & Science in Sports & Exercise, 39(2), 377390. PubMed ID: 17277604 doi:10.1249/mss.0b013e31802ca597

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, Y., Filep, E.M., Benjamin, C.L., Casa, D.J., & DiStefano, L.J. (2020). Does Dehydration affect the adaptations of plasma volume, heart rate, internal body temperature, and sweat rate during the induction phase of heat acclimation? Journal of Sport Rehabilitation, 29(6), 847850. PubMed ID: 31910392 doi:10.1123/jsr.2019-0174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sunderland, C., Morris, J.G., & Nevill, M.E. (2008). A heat acclimation protocol for team sports. British Journal of Sports Medicine, 42(5), 327333. PubMed ID: 18460609 doi:10.1136/bjsm.2007.034207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Travers, G., Nichols, D., Riding, N., González-Alonso, J., & Périard, J.D. (2020). Heat acclimation with controlled heart rate: Influence of hydration status. Medicine & Science in Sports & Exercise, 52(8), 18151824. PubMed ID: 32102056 doi:10.1249/MSS.0000000000002320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyler, C.J., Reeve, T., Hodges, G.J., & Cheung, S.S. (2016). The effects of heat adaptation on physiology, perception and exercise performance in the heat: A meta-analysis. Sports Medicine, 46(11), 16991724. PubMed ID: 27106556 doi:10.1007/s40279-016-0538-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilk, B., Timmons, B.W., & Bar-Or, O. (2010). Voluntary fluid intake, hydration status, and aerobic performance of adolescent athletes in the heat. Applied Physiology, Nutrition, and Metabolism, 35(6), 834841. PubMed ID: 21164555 doi:10.1139/H10-084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeargin, S.W., Casa, D.J., Armstrong, L.E., Watson, G., Judelson, D.A., Psathas, E., & Sparrow, S.L. (2006). Heat acclimatization and hydration status of American football players during initial summer workouts. Journal of Strength and Conditioning Research, 20(3), 463470. PubMed ID: 16937956 doi:10.1519/20596.1

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2485 1249 137
Full Text Views 345 48 10
PDF Downloads 324 60 11