CYP1A2 Genotype Modifies the Effects of Caffeine Compared With Placebo on Muscle Strength in Competitive Male Athletes

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 University of Toronto
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Caffeine is commonly used to improve athletic performance across a variety of sports. Previously, the CYP1A2 gene has been shown to modify the effects of caffeine on endurance performance. The effect of caffeine on strength and power activities is unclear and may differ depending on an individual’s CYP1A2 genotype. A randomized controlled trial was used to determine whether caffeine impacts strength and power, determined by the handgrip and vertical jump tests, respectively, and whether CYP1A2 genotype modifies any effects. Competitive male athletes (age = 25 ± 4 years) completed vertical jump (n = 97), and handgrip tests (n = 102) under three conditions: 0 (placebo), 2, or 4 mg of caffeine per kilogram of body mass (in milligrams per kilogram). CYP1A2 (rs762551) genotype was determined from saliva samples. No differences between caffeine doses and placebo were observed for strength or power; however, significant Caffeine × Gene interactions were observed for all exercise tests. Individuals with the CC genotype experienced a 12.8% decrease in handgrip strength with 4 mg/kg of caffeine compared with placebo (53 ± 11 kg vs. 61 ± 17 kg, p = .02). No differences were observed in those with the AC or AA genotypes. Despite observing a significant Caffeine × Gene interaction for vertical jump performance, no differences were observed between caffeine doses and placebo for all genotypes. In summary, caffeine (4 mg/kg) worsened handgrip strength performance in those with the CC genotype, but no differences were observed in those with the AC or AA genotypes. Athletes may want to consider their CYP1A2 genotype prior to using caffeine to improve muscle strength.

The authors are with the Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

El-Sohemy (a.el.sohemy@utoronto.ca) is corresponding author.
  • Aguilar-Navarro, M., Muñoz, G., Salinero, J.J., Muñoz-Guerra, J., Fernández-Álvarez, M., Plata, M.D.M., & Del Coso, J. (2019). Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients, 11(2), 286. doi:10.3390/nu11020286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, A., O’Donnell, J., Foskett, A., & Rutherfurd-Markwick, K. (2016). The influence of caffeine ingestion on strength and power performance in female team-sport players. Journal of the International Society of Sports Nutrition, 13(1), 19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armatas, V., Bassa, E., Patikas, D., Kitsas, I., Zangelidis, G., & Kotzamanidis, C. (2010). Neuromuscular differences between men and prepubescent boys during a peak isometric knee extension intermittent fatigue test. Pediatric Exercise Science, 22(2), 205217. PubMed ID: 20567042 doi:10.1123/pes.22.2.205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, A., Yang, Q., Wen, S.W., Lalonde, A.B., Guilbert, E., & Fisher, W. (2009). Contraceptive use among Canadian women of reproductive age: Results of a national survey. Journal of Obstetrics and Gynaecology Canada, 31(7), 627640. PubMed ID: 19761636 doi:10.1016/S1701-2163(16)34242-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloms, L.P., Fitzgerald, J.S., Short, M.W., & Whitehead, J.R. (2016). The effects of caffeine on vertical jump height and execution in collegiate athletes. The Journal of Strength & Conditioning Research, 30(7), 18551861. PubMed ID: 26626028 doi:10.1519/JSC.0000000000001280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonnet, M.H., & Arand, D. (1992). Caffeine use as a model of acute and chronic insomnia. Sleep, 15(6), 526536. PubMed ID: 1475567

  • Bramstedt, K.A. (2007). Caffeine use by children: The quest for enhancement. Substance Use & Misuse, 42(8), 12371251. PubMed ID: 17674233 doi:10.1080/10826080701208962

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckthorpe, M., Morris, J., & Folland, J.P. (2012). Validity of vertical jump measurement devices. Journal of Sports Sciences, 30(1), 6369. PubMed ID: 22111944 doi:10.1080/02640414.2011.624539

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, A.J., Gore, C.J., & Dawson, B. (2011). Induced alkalosis and caffeine supplementation: Effects on 2,000-m rowing performance. International Journal of Sport Nutrition and Exercise Metabolism, 21(5), 357364. PubMed ID: 21799214 doi:10.1123/ijsnem.21.5.357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • Cornelis, M.C., El-Sohemy, A., Kabagambe, E.K., & Campos, H. (2006). Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA, 295(10), 11351141. PubMed ID: 16522833 doi:10.1001/jama.295.10.1135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, J., Lawton, T., Harris, N., Kilding, A., & McMaster, D.T. (2017). A brief review of handgrip strength and sport performance. The Journal of Strength & Conditioning Research, 31(11), 31873217. PubMed ID: 28820854 doi:10.1519/JSC.0000000000002149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, J.W. (1982). Adenosine receptors: Targets for future drugs. Journal of Medicinal Chemistry, 25(3), 197207. PubMed ID: 6279840 doi:10.1021/jm00345a001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva Athayde, M.S., Kons, R.L., & Detanico, D. (2018). Can caffeine intake improve neuromuscular and technical-tactical performance during judo matches? The Journal of Strength & Conditioning Research, 32(11), 30953102. doi:10.1519/JSC.0000000000002451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denden, S., Bouden, B., Haj Khelil, A., Ben Chibani, J., & Hamdaoui, M.H. (2016). Gender and ethnicity modify the association between the CYP1A2 rs762551 polymorphism and habitual coffee intake: Evidence from a meta-analysis. Genetics and Molecular Research, 15(2). doi:10.4238/gmr.15027487

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz-Lara, F.J., Del Coso, J., García, J.M., Portillo, L.J., Areces, F., & Abián-Vicén, J. (2016). Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. European Journal of Sport Science, 16(8), 10791086. PubMed ID: 26863885 doi:10.1080/17461391.2016.1143036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, M., & Smith, P. (2005). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, 15(2), 6978. PubMed ID: 15773860 doi:10.1111/j.1600-0838.2005.00445.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, M.J., Stanley, M., Parkhouse, N., Cook, K., & Smith, M. (2013). Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. European Journal of Sport Science, 13(4), 392399. PubMed ID: 23834545 doi:10.1080/17461391.2011.635811

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunwiddie, T.V. (1985). The physiological role of adenosine in the central nervous system. International Review of Neurobiology, 27, 63139. PubMed ID: 2867982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • España-Romero, V., Ortega, F.B., Vicente-Rodríguez, G., Artero, E.G., Rey, J.P., & Ruiz, J.R. (2010). Elbow position affects handgrip strength in adolescents: Validity and reliability of Jamar, DynEx, and TKK dynamometers. The Journal of Strength & Conditioning Research, 24(1), 272277. PubMed ID: 19966590 doi:10.1519/JSC.0b013e3181b296a5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghotbi, R., Christensen, M., Roh, H.-K., Ingelman-Sundberg, M., Aklillu, E., & Bertilsson, L. (2007). Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. European Journal of Clinical Pharmacology, 63(6), 537546. PubMed ID: 17370067 doi:10.1007/s00228-007-0288-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, T., & Spriet, L. (1995). Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. Journal of Applied Physiology, 78(3), 867874. PubMed ID: 7775331 doi:10.1152/jappl.1995.78.3.867

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grgic, J., Pickering, C., Bishop, D.J., Schoenfeld, B.J., Mikulic, P., & Pedisic, Z. (2020). CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. Journal of the International Society of Sports Nutrition, 17(1), 111. doi:10.1186/s12970-020-00349-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guest, N., Corey, P., Vescovi, J., & El-Sohemy, A. (2018). Caffeine, CYP1A2 genotype, and endurance performance in athletes. Medicine & Science in Sports & Exercise, 50(8), 15701578. PubMed ID: 29509641 doi:10.1249/MSS.0000000000001596

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guest, N.S., VanDusseldorp, T.A., Nelson, M.T., Grgic, J., Schoenfeld, B.J., Jenkins, N.D. . . . Trexler, E.T. (2021). International society of sports nutrition position stand: Caffeine and exercise performance. Journal of the International Society of Sports Nutrition, 18(1), 137. PubMed ID: 33388079 doi:10.1186/s12970-020-00383-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heckman, M.A., Weil, J., & De Mejia, E.G. (2010). Caffeine (1, 3, 7‐trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. Journal of Food Science, 75(3), R77R87. PubMed ID: 20492310 doi:10.1111/j.1750-3841.2010.01561.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, J.P., & Babu, K.M. (2013). Caffeine reduces myocardial blood flow during exercise. The American Journal of Medicine, 126(8), 730.e1730.e8. doi:10.1016/j.amjmed.2012.12.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horiuchi, M., Endo, J., Sato, T., & Okita, K. (2018). Jump training with blood flow restriction has no effect on jump performance. Biology of Sport, 35(4), 343. PubMed ID: 30765919 doi:10.5114/biolsport.2018.78053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hukkanen, J., Jacob, P., III, Peng, M., Dempsey, D., & Benowitz, N.L. (2011). Effect of nicotine on cytochrome P450 1A2 activity. British Journal of Clinical Pharmacology, 72(5), 836. PubMed ID: 21599724 doi:10.1111/j.1365-2125.2011.04023.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josse, A.R., Da Costa, L.A., Campos, H., et al. (2012). Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption. American Journal of Clinical Nutrition, 96(3), 665671. doi:10.3945/ajcn.112.038794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latini, S., & Pedata, F. (2001). Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. Journal of Neurochemistry, 79(3), 463484. PubMed ID: 11701750 doi:10.1046/j.1471-4159.2001.00607.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, A., López-Samanes, Á., Aguilar-Navarro, M., Varillas-Delgado, D., Rivilla-García, J., Moreno-Pérez, V., & Coso, J.D. (2020). Effects of CYP1A2 and ADORA2A genotypes on the ergogenic response to caffeine in professional handball players. Genes, 11(8), 933. doi:10.3390/genes11080933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nédélec, M., Halson, S., Abaidia, A.-E., Ahmaidi, S., & Dupont, G. (2015). Stress, sleep and recovery in elite soccer: A critical review of the literature. Sports Medicine, 45(10), 13871400. PubMed ID: 26206724 doi:10.1007/s40279-015-0358-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabol, F., Grgic, J., & Mikulic, P. (2019). The effects of 3 different doses of caffeine on jumping and throwing performance: A randomized, double-blind, crossover study. International Journal of Sports Physiology and Performance, 14(9), 11701177. doi:10.1123/ijspp.2018-0884

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachse, C., Brockmöller, J., Bauer, S., & Roots, I. (1999). Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. British Journal of Clinical Pharmacology, 47(4), 445449. PubMed ID: 10233211 doi:10.1046/j.1365-2125.1999.00898.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spineli, H., Pinto, M.P., Dos Santos, B.P., Lima‐Silva, A.E., Bertuzzi, R., Gitaí, D.L., & de Araujo, G.G. (2020). Caffeine improves various aspects of athletic performance in adolescents independent of their 163 C > A CYP1A2 genotypes. Scandinavian Journal of Medicine & Science in Sports, 30(10), 18691877. PubMed ID: 32538495 doi:10.1111/sms.13749

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spriet, L.L. (2014). New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Medicine, 44(Suppl. 1), 8796. doi:10.1007/s40279-014-0154-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talanian, J.L., & Spriet, L.L. (2016). Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Applied Physiology, Nutrition, and Metabolism, 41(8), 850855. PubMed ID: 27426699 doi:10.1139/apnm-2016-0053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, D.D., Natesan, S., White, J.R., & Paine, M.F. (2019). Effects of common CYP 1A2 genotypes and other key factors on intraindividual variation in the caffeine metabolic ratio: An exploratory analysis. Clinical and Translational Science, 12(1), 3946. PubMed ID: 30387917 doi:10.1111/cts.12598

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Dijk, R., Ties, D., Kuijpers, D., Van der Harst, P., & Oudkerk, M. (2018). Effects of caffeine on myocardial blood flow: A systematic review. Nutrients, 10(8), 1083. doi:10.3390/nu10081083

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watkins, C.M., Barillas, S.R., Wong, M.A., Archer, D.C., Dobbs, I.J., Lockie, R.G.. . . Brown, L.E. (2017). Determination of vertical jump as a measure of neuromuscular readiness and fatigue. The Journal of Strength & Conditioning Research, 31(12), 33053310. PubMed ID: 28902119 doi:10.1519/JSC.0000000000002231

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 658 658 217
Full Text Views 209 209 81
PDF Downloads 143 143 58