The Utility of the Low Energy Availability in Females Questionnaire to Detect Markers Consistent With Low Energy Availability-Related Conditions in a Mixed-Sport Cohort

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Margot A. RogersAustralian Institute of Sport
University of Canberra

Search for other papers by Margot A. Rogers in
Current site
Google Scholar
PubMed
Close
*
,
Michael K. DrewAustralian Institute of Sport
University of Canberra

Search for other papers by Michael K. Drew in
Current site
Google Scholar
PubMed
Close
*
,
Renee AppanealAustralian Institute of Sport
University of Canberra

Search for other papers by Renee Appaneal in
Current site
Google Scholar
PubMed
Close
*
,
Greg LovellUniversity of Canberra

Search for other papers by Greg Lovell in
Current site
Google Scholar
PubMed
Close
*
,
Bronwen LundyAustralian Catholic University

Search for other papers by Bronwen Lundy in
Current site
Google Scholar
PubMed
Close
*
,
David HughesAustralian Institute of Sport

Search for other papers by David Hughes in
Current site
Google Scholar
PubMed
Close
*
,
Nicole VlahovichUniversity of Canberra

Search for other papers by Nicole Vlahovich in
Current site
Google Scholar
PubMed
Close
*
,
Gordon WaddingtonAustralian Institute of Sport
University of Canberra

Search for other papers by Gordon Waddington in
Current site
Google Scholar
PubMed
Close
*
, and
Louise M. BurkeAustralian Catholic University

Search for other papers by Louise M. Burke in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The Low Energy Availability in Females Questionnaire (LEAF-Q) was validated to identify risk of the female athlete triad (triad) in female endurance athletes. This study explored the ability of the LEAF-Q to detect conditions related to low energy availability (LEA) in a mixed sport cohort of female athletes. Data included the LEAF-Q, SCOFF Questionnaire for disordered eating, dual-energy X-ray absorptiometry-derived body composition and bone mineral density, Mini International Neuropsychiatric Interview, blood pressure, and blood metabolic and reproductive hormones. Participants were grouped according to LEAF-Q score (≥8 or <8), and a comparison of means was undertaken. Sensitivity, specificity, and predictive values of the overall score and subscale scores were calculated in relation to the triad and biomarkers relevant to LEA. Fisher’s exact test explored differences in prevalence of these conditions between groups. Seventy-five athletes (18–32 years) participated. Mean LEAF-Q score was 8.0 ± 4.2 (55% scored ≥8). Injury and menstrual function subscale scores identified low bone mineral density (100% sensitivity, 95% confidence interval [15.8%, 100%]) and menstrual dysfunction (80.0% sensitivity, 95% confidence interval [28.4%, 99.5%]), respectively. The gastrointestinal subscale did not detect surrogate markers of LEA. LEAF-Q score cannot be used to classify athletes as “high risk” of conditions related to LEA, nor can it be used as a surrogate diagnostic tool for LEA given the low specificity identified. Our study supports its use as a screening tool to rule out risk of LEA-related conditions or to create selective low-risk groups that do not need management as there were generally high negative predictive values (range 76.5–100%) for conditions related to LEA.

Rogers is with the Australian Institute of Sport, Bruce, ACT, Australia. Rogers, Drew, Appaneal, Lovell, Vlahovich, and Waddington are with the Research Institute for Sport and Exercise, University of Canberra, Bruce, ACT, Australia. Drew and Appaneal are also with Applied Technology and Innovation, Australian Institute of Sport, Bruce, ACT, Australia. Lundy and Burke are with the Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia. Hughes and Waddington are with the Department of Sports Medicine, Australian Institute of Sport, Bruce, ACT, Australia.

Rogers (margot.rogers@ausport.gov.au) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 263 KB)
    • Supplementary Material 2 (PDF 590 KB)
    • Supplementary Material 3 (PDF 220 KB)
  • Collapse
  • Expand
  • Betts, J.A., Gonzalez, J.T., Burke, L.M., Close, G.L., Garthe, I., James, L.J., . . . Atkinson, G. (2020). PRESENT 2020: Text expanding on the checklist for proper reporting of evidence in sport and exercise nutrition trials. International Journal of Sport Nutrition and Exercise Metabolism, 30(1), 213. PubMed ID: 31945740 doi:10.1123/ijsnem.2019-0326

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bone, J.L., & Burke, L.M. (2018). No difference in young adult athletes’ resting energy expenditure when measured under inpatient or outpatient conditions. International Journal of Sport Nutrition and Exercise Metabolism, 28(5), 464467. PubMed ID: 29140154 doi:10.1123/ijsnem.2016-0315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M., Lundy, B., Fahrenholtz, I.L., & Melin, A.K. (2018). Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 350363. PubMed ID: 30029584 doi:10.1123/ijsnem.2018-0142

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, S. (2019). Low energy availability and cardiovascular disease risk in elite female rugby sevens players: An observational study (Master of Science). Otago, New Zealand: University of Otago. Retrieved from https://ourarchive.otago.ac.nz/handle/10523/9126?show=full

    • Search Google Scholar
    • Export Citation
  • Condo, D., Lohman, R., Kelly, M., & Carr, A. (2019). Nutritional intake, sports nutrition knowledge and energy availability in female Australian rules football players. Nutrients, 11(5), 971. doi:10.3390/nu11050971

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, R.J.S., Snipe, R.M.J., Kitic, C.M., & Gibson, P.R. (2017). Systematic review: Exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Alimentary Pharmacology and Therapeutics, 46(3), 246265. PubMed ID: 28589631 doi:10.1111/apt.14157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, J.J. (1991). Body composition as a determinant of energy expenditure: A synthetic review and a proposed general prediction equation. The American Journal of Clinical Nutrition, 54(6), 963969. PubMed ID: 1957828 doi:10.1093/ajcn/54.6.963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Souza, M.J., Nattiv, A., Joy, E., Misra, M., Williams, N.I., Mallinson, R.J., . . . Expert, P. (2014). 2014 Female Athlete Triad Coalition consensus statement on treatment and return to play of the Female Athlete Triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. British Journal of Sports Medicine, 48(4), 289. doi:10.1136/bjsports-2013-093218

    • Search Google Scholar
    • Export Citation
  • Drew, M., Vlahovich, N., Hughes, D., Appaneal, R., Burke, L.M., Lundy, B., . . . Waddington, G. (2018). Prevalence of illness, poor mental health and sleep quality and low energy availability prior to the 2016 Summer Olympic Games. British Journal of Sports Medicine, 52(1), 4753. PubMed ID: 29056598 doi:10.1136/bjsports-2017-098208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drew, M.K., Vlahovich, N., Hughes, D., Appaneal, R., Peterson, K., Burke, L., . . . Waddington, G. (2017). A multifactorial evaluation of illness risk factors in athletes preparing for the Summer Olympic Games. Journal of Science and Medicine in Sport, 20(8), 745750. PubMed ID: 28385561 doi:10.1016/j.jsams.2017.02.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott-Sale, K.J., Tenforde, A.S., Parziale, A.L., Holtzman, B., & Ackerman, K.E. (2018). Endocrine effects of relative energy deficiency in sport. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 335349. PubMed ID: 30008240 doi:10.1123/ijsnem.2018-0127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulbin, J.P., Croser, M.J., Morley, E.J., & Weissensteiner, J.R. (2013). An integrated framework for the optimisation of sport and athlete development: A practitioner approach. Journal of Sports Sciences, 31(12), 13191331. PubMed ID: 23631711 doi:10.1080/02640414.2013.781661

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagmar, M., Berglund, B., Brismar, K., & Hirschberg, A.L. (2009). Hyperandrogenism may explain reproductive dysfunction in Olympic athletes. Medicine and Science in Sports and Exercise, 41(6), 12411248. PubMed ID: 19461542 doi:10.1249/MSS.0b013e318195a21a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikura, I., Uusitalo, A., Stellingwerff, T., Bergland, D., Mero, A., & Burke, L. (2017). Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 403411. doi:10.1123/ijsnem.2017-0313

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Olympic Committee Injury Illness Epidemiology Consensus Group, Bahr, R., Clarsen, B., Derman, W., Dvorak, J., Emery, C.A., . . . Chamari, K. (2020). International Olympic Committee consensus statement: Methods for recording and reporting of epidemiological data on injury and illness in sports 2020 (including the STROBE extension for sports injury and illness surveillance (STROBE-SIIS)). Orthopaedic Journal of Sports Medicine, 8(2), 2325967120902908. doi:10.1177/2325967120902908

    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., Kiens, B., & Wright, H.H. (2011). Energy availability in athletes. Journal of Sports Sciences, 29(Suppl. 1), S7S15. doi:10.1080/02640414.2011.588958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melin, A., Tornberg, A.B., Skouby, S., Faber, J., Ritz, C., Sjodin, A., & Sundgot-Borgen, J. (2014). The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. British Journal of Sports Medicine, 48(7), 540545. PubMed ID: 24563388 doi:10.1136/bjsports-2013-093240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, J.F., Reid, F., & Lacey, J.H. (1999). The SCOFF questionnaire: Assessment of a new screening tool for eating disorders. BMJ, 319(7223), 14671468. PubMed ID: 10582927 doi:10.1136/bmj.319.7223.1467

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountjoy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C., . . . Ljungqvist, A. (2014). The IOC consensus statement: Beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S). British Journal of Sports Medicine, 48(7), 491. PubMed ID: 24620037 doi:10.1136/bjsports-2014-093502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountjoy, M., Sundgot-Borgen, J.K., Burke, L.M., Ackerman, K.E., Blauwet, C., Constantini, N., . . . Budgett, R. (2018). IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. British Journal of Sports Medicine, 52(11), 687697. PubMed ID: 29773536 doi:10.1136/bjsports-2018-099193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nana, A., Slater, G.J., Hopkins, W.G., & Burke, L.M. (2012). Effects of daily activities on dual-energy X-ray absorptiometry measurements of body composition in active people. Medicine and Science in Sports and Exercise, 44(1), 180189. PubMed ID: 22179140 doi:10.1249/MSS.0b013e318228b60e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, M.A., Appaneal, R.N., Hughes, D., Vlahovich, N., Waddington, G., Burke, L.M., & Drew, M. (2020). Prevalence of impaired physiological function consistent with relative energy deficiency in sport (RED-S): An Australian elite and pre-elite cohort. British Journal of Sports Medicine, 55(1), 3845. PubMed ID: 33199358 doi:10.1136/bjsports-2019-101517

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seed, P. (2010). DIAGT: Stata module to report summary statistics for diagnostic tests compared to true disease status. Statistical Software Components. Retrieved from https://EconPapers.repec.org/RePEc:boc:bocode:s423401

    • Search Google Scholar
    • Export Citation
  • Shaw, D., Gohil, K., & Basson, M.D. (2012). Intestinal mucosal atrophy and adaptation. World Journal of Gastroenterology, 18(44), 63576375. PubMed ID: 23197881 doi:10.3748/wjg.v18.i44.6357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheehan, D.V., Lecrubier, Y., Sheehan, K.H., Amorim, P., Janavs, J., Weiller, E., . . . Dunbar, G.C. (1998). The mini-international neuropsychiatric interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl. 20), 2233.

    • Search Google Scholar
    • Export Citation
  • Slater, J., McLay-Cooke, R., Brown, R., & Black, K. (2016). Female recreational exercisers at risk for low energy availability. International Journal of Sport Nutrition and Exercise Metabolism, 26(5), 421427. PubMed ID: 26841435 doi:10.1123/ijsnem.2015-0245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staal, S., Sjodin, A., Fahrenholtz, I., Bonnesen, K., & Melin, A.K. (2018). Low RMRratio as a surrogate marker for energy deficiency, the choice of predictive equation vital for correctly identifying male and female ballet dancers at risk. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 412418. PubMed ID: 29405782 doi:10.1123/ijsnem.2017-0327

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stellingwerff, T. (2018). Case study: Body composition periodization in an Olympic-level female middle-distance runner over a 9-year career. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 428433. PubMed ID: 29140157 doi:10.1123/ijsnem.2017-0312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strock, N.C.A., Koltun, K.J., Southmayd, E.A., Williams, N.I., & De Souza, M.J. (2020). Indices of resting metabolic rate accurately reflect energy deficiency in exercising women. International Journal of Sport Nutrition and Exercise Metabolism, 30(1), 1424. PubMed ID: 31887723 doi:10.1123/ijsnem.2019-0199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sygo, J., Coates, A.M., Sesbreno, E., Mountjoy, M.L., & Burr, J.F. (2018). Prevalence of indicators of low energy availability in elite female sprinters. International Journal of Sport Nutrition and Exercise Metabolism, 28(5), 490496. PubMed ID: 29757049 doi:10.1123/ijsnem.2017-0397

    • Crossref
    • Search Google Scholar
    • Export Citation
  • The International Society for Clinical Densitometry. (2015). 2015 ISCD Official Positions—Adult. Retrieved from https://www.iscd.org/official-positions/2015-iscd-official-positions-adult/

    • Search Google Scholar
    • Export Citation
  • Williams, N.I., Koltun, K.J., Strock, N.C.A., & De Souza, M.J. (2019). Female athlete triad and relative energy deficiency in sport: A focus on scientific rigor. Exercise and Sport Sciences Reviews, 47(4), 197205. PubMed ID: 31524785 doi:10.1249/JES.0000000000000200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J., & Junger, G. (1968). Principles and practice of screening for disease. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/37650/WHO_PHP_34.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5165 2467 160
Full Text Views 565 68 4
PDF Downloads 614 100 6