Exercise and Heat Stress: Inflammation and the Iron Regulatory Response

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Australian Catholic University
  • | 2 Western Australian Institute of Sport
  • | 3 The University of Western Australia
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

This study determined the impact of heat stress on postexercise inflammation and hepcidin levels. Twelve moderately trained males completed three, 60-min treadmill running sessions under different conditions: (a) COOL, 18 °C with speed maintained at 80% maximum heart rate; (b) HOTHR, 35 °C with speed maintained at 80% maximum heart rate; and (c) HOTPACE, 35 °C completed at the average running speed from the COOL trial. Venous blood samples were collected pre-, post-, and 3-hr postexercise and analyzed for serum ferritin, interleukin-6 (IL-6), and hepcidin concentrations. Average HR was highest during HOTPACE compared with HOTHR and COOL (p < .001). Running speed was slowest in HOTHR compared with COOL and HOTPACE (p < .001). The postexercise increase in IL-6 was greatest during HOTPACE (295%; p = .003). No differences in the IL-6 response immediately postexercise between COOL (115%) and HOTHR (116%) were evident (p = .992). No differences in hepcidin concentrations between the three trials were evident at 3 hr postexercise (p = .407). Findings from this study suggest the IL-6 response to exercise is greatest in hot compared with cool conditions when the absolute running speed was matched. No differences in IL-6 between hot and cool conditions were evident when HR was matched, suggesting the increased physiological strain induced from training at higher intensities in hot environments, rather than the heat per se, is likely responsible for this elevated response. Environmental temperature had no impact on hepcidin levels, indicating that exercising in hot conditions is unlikely to further impact transient alterations in iron regulation, beyond that expected in temperate conditions.

McKay and Tee are with the Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia. McCormick and Peeling are with the Western Australian Institute of Sport, Mt Claremont, Western Australia, Australia. Peeling is also with the School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia.

McKay (Alannah.mckay@acu.edu.au) is corresponding author.
  • Badenhorst, C.E., Dawson, B., Cox, G.R., Laarakkers, C.M., Swinkels, D.W., & Peeling, P. (2015). Acute dietary carbohydrate manipulation and the subsequent inflammatory and hepcidin responses to exercise. European Journal of Applied Physiology, 115(12), 25212530. PubMed ID: 26335627 doi:10.1007/s00421-015-3252-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badenhorst, C.E., Dawson, B., Goodman, C., Sim, M., Cox, G.R., Gore, C.J., … Peeling, P. (2014). Influence of post-exercise hypoxic exposure on hepcidin response in athletes. European Journal of Applied Physiology, 114(5), 951959. PubMed ID: 24487960 doi:10.1007/s00421-014-2829-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, L.B. (2017). Sweating rate and sweat sodium concentration in athletes: A review of methodology and intra/interindividual variability. Sports Medicine, 47(Suppl. 1), 111128. doi:10.1007/s40279-017-0691-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, J.L. (2001). Iron biology in immune function, muscle metabolism and neuronal functioning. Journal of Nutrition, 131(2S-2), 568S580S. doi:10.1093/jn/131.2.568S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chinevere, T.D., Keneflick, R.W., Cheuvront, S.N., Lukaski, H.C., & Sawka, M.N. (2008). Effect of heat acclimation on sweat minerals. Medicine and Science in Sports and Exercise, 40(5), 886891. PubMed ID: 18408609 doi:10.1249/MSS.0b013e3181641c04

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, M.J., & Zlotkin, S.H. (1996). Day-to-day variation of transferrin receptor and ferritin in healthy men and women. The American Journal of Clinical Nutrition, 64(5), 738742. PubMed ID: 8901794 doi:10.1093/ajcn/64.5.738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, R.J.S., Snipe, R.M.J., Kitic, C.M., & Gibson, P.R. (2017). Systematic review: Exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Alimentary Pharmacology & Therapeutics, 46(3), 246265. PubMed ID: 28589631 doi:10.1111/apt.14157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daher, R., & Karim, Z. (2017). Iron metabolism: State of the art. Transfusion Clinique et Biologique, 24(3), 115119. PubMed ID: 28694024 doi:10.1016/j.tracli.2017.06.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domínguez, R., Sánchez-Oliver, A.J., Mata-Ordoñez, F., Feria-Madueño, A., Grimaldi-Puyana, M., López-Samanes, Á., & Pérez-López, A. (2018). Effects of an acute exercise bout on serum hepcidin levels. Nutrients, 10(2), 209. doi:10.3390/nu10020209

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Febbraio, M.A. (2001). Alterations in energy metabolism during exercise and heat stress. Sports Medicine, 31(1), 4759. PubMed ID: 11219501 doi:10.2165/00007256-200131010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Febbraio, M.A., Snow, R.J., Hargreaves, M., Stathis, C.G., Martin, I.K., & Carey, M.F. (1994). Muscle metabolism during exercise and heat stress in trained men: Effect of acclimation. Journal of Applied Physiology, 76(2), 589597. PubMed ID: 8175568 doi:10.1152/jappl.1994.76.2.589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, C.P. (2006). Interleukin-6 in acute exercise and training: What is the biological relevance? Execise Immunology Review, 12, 633.

    • Search Google Scholar
    • Export Citation
  • Ganz, T. (2003). Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood, 102(3), 783788. PubMed ID: 12663437 doi:10.1182/blood-2003-03-0672

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, N., Yatsutani, H., Mori, H., Ito, H., Badenhorst, C.E., & Goto, K. (2020). No effect of supplemented heat stress during an acute endurance exercise session in hypoxia on hepcidin regulation. European Journal of Applied Physiology, 120(6), 13311340. PubMed ID: 32303828 doi:10.1007/s00421-020-04365-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, R., Moretti, D., McKay, A.K.A., Laarakkers, C.M., Van Swelm, R., Trinder, D., … Peeling, P. (2019). The impact of morning versus afternoon exercise on iron absorption in athletes. Medicine and Science in Sports and Exercise, 51(10), 21472155. PubMed ID: 31058762 doi:10.1249/MSS.0000000000002026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A., Heikura, I.A., Burke, L.M., Peeling, P., Pyne, D.B., van Swelm, R.P.L., … Cox, G.R. (2020). Influence of periodizing dietary carbohydrate on iron regulation and immune function in elite triathletes. International Journal of Sport Nutrition and Exercise Metabolism, 30(1), 3441. PubMed ID: 31629353 doi:10.1123/ijsnem.2019-0131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A., Peeling, P., Pyne, D.B., Tee, N., Welveart, M., Heikura, I.A., … Burke, L.M. (2021). Sustained exposure to high carbohydrate availability does not influence iron regulatory responses in elite endurance athletes. International Journal of Sport Nutrition and Exercise Metabolism, 31(2), 101108. doi:10.1123/ijsnem.2020-0224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A, Peeling, P., Pyne, D.B., Welvaert, M., Tee, N., Leckey, J.J., … Swinkels, D.W. (2019a). Chronic adherence to a ketogenic diet modifies iron metabolism in elite athletes. Medicine and Science in Sports and Exercise, 51(3), 548555. doi:10.1249/MSS.0000000000001816

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A, Peeling, P., Pyne, D.B., Welvaert, M., Tee, N., Leckey, J.J., … van Swelm, R.P. (2019b). Acute carbohydrate ingestion does not influence the post-exercise iron-regulatory response in elite keto-adapted race walkers. Journal of Science and Medicine in Sport, 22(6), 635640. doi:10.1016/j.jsams.2018.12.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A., Pyne, D.B., Burke, L.M., & Peeling, P. (2020). Iron metabolism: Interactions with energy and carbohydrate availability. Nutrients, 12(12), 3692. doi:10.3390/nu12123692

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemeth, E., Rivera, S., Gabayan, V., Keller, C., Taudorf, S., Pedersen, B.K., & Ganz, T. (2004). IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. The Journal of Clinical Investigation, 113(9), 12711276. PubMed ID: 15124018 doi:10.1172/JCI200420945

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemeth, E., Tuttle, M.S., Powelson, J., Vaughn, M.B., Donovan, A., Ward, D.M., … Kaplan, J. (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 306(5704), 20902093. PubMed ID: 15514116 doi:10.1126/science.1104742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newlin, M.K., Williams, S., McNamara, T., Tjalsma, H., Swinkels, D.W., & Haymes, E.M. (2012). The effects of acute exercise bouts on hepcidin in women. International Journal of Sport Nutrition and Exercise Metabolism, 22(2), 7988. PubMed ID: 22349362 doi:10.1123/ijsnem.22.2.79

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, B.K., Steensberg, A., & Schjerling, P. (2001). Exercise and interleukin-6. Current Opinion in Hematology, 8(3), 137141. PubMed ID: 11303145 doi:10.1097/00062752-200105000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Dawson, B., Goodman, C., Landers, G., Wiegerinck, E.T., Swinkels, D.W., & Trinder, D. (2009). Effects of exercise on hepcidin response and iron metabolism during recovery. International Journal of Sport Nutrition and Exercise Metabolism, 19(6), 583597. PubMed ID: 20175428 doi:10.1123/ijsnem.19.6.583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., McKay, A.K., Pyne, D.B., Guelfi, K.J., McCormick, R.H., Laarakkers, C.M., … Burke, L.M. (2017). Factors influencing the post-exercise hepcidin-25 response in elite athletes. European Journal of Applied Physiology, 117(6), 12331239. PubMed ID: 28409396 doi:10.1007/s00421-017-3611-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Sim, M., Badenhorst, C.E., Dawson, B., Govus, A.D., Abbiss, C.R., … Trinder, D. (2014). Iron status and the acute post-exercise hepcidin response in athletes. PLoS One, 9(3), e93002. PubMed ID: 24667393 doi:10.1371/journal.pone.0093002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Périard, J.D., Racinais, S., & Sawka, M.N. (2015). Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scandinavian Journal of Medicine & Science in Sports, 25, 2038. PubMed ID: 25943654 doi:10.1111/sms.12408

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, P.U., Garvican-Lewis, L.A., Schmidt, W.F., & Gore, C.J. (2013). Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure. British Journal of Sports Medicine, 47(Suppl. 1), i26i30. doi:10.1136/bjsports-2013-092841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, M., Dawson, B., Landers, G., Swinkels, D.W., Tjalsma, H., Trinder, D., & Peeling, P. (2013). Effect of exercise modality and intensity on postexercise interleukin-6 and hepcidin levels. International Journal of Sport Nutrition and Exercise Metabolism, 23(2), 178186. PubMed ID: 23070801 doi:10.1123/ijsnem.23.2.178

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snipe, R.M.J., Khoo, A., Kitic, C.M., Gibson, P.R., & Costa, R.J.S. (2018). The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. European Journal of Applied Physiology, 118(2), 389400. PubMed ID: 29234915 doi:10.1007/s00421-017-3781-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starkie, R.L., Hargreaves, M., Lambert, D.L., Proietto, J., & Febbraio, M.A. (1999). Effect of temperature on muscle metabolism during submaximal exercise in humans. Experimental Physiology, 84(4), 775784. PubMed ID: 10481233 doi:10.1111/j.1469-445X.1999.01815.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starkie, R., Hargreaves, M., Rolland, J., & Febbraio, M. (2005). Heat stress, cytokines, and the immune response to exercise. Brain, Behavior, and Immunity, 19(5), 404412. PubMed ID: 16061150 doi:10.1016/j.bbi.2005.03.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steensberg, A., Febbraio, M.A., Osada, T., Schjerling, P., Hall, G., Saltin, B., & Pedersen, B.K. (2001). Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. The Journal of Physiology, 537(2), 633639. doi:10.1111/j.1469-7793.2001.00633.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troutt, J.S., Rudling, M., Persson, L., Ståhle, L., Angelin, B., Butterfield, A.M., … Konrad, R.J. (2012). Circulating human hepcidin-25 concentrations display a diurnal rhythm, increase with prolonged fasting, and are reduced by growth hormone administration. Clinical Chemistry, 58(8), 12251232. PubMed ID: 22679180 doi:10.1373/clinchem.2012.186866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Wijck, K., Lenaerts, K., Van Loon, L.J.C., Peters, W.H.M., Buurman, W.A., & Dejong, C.H.C. (2011). Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One, 6(7), e22366. doi:10.1371/journal.pone.0022366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vargas, N., & Marino, F. (2016). Heat stress, gastrointestinal permeability and interleukin-6 signaling—Implications for exercise performance and fatigue. Temperature, 3(2), 240251. doi:10.1080/23328940.2016.1179380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, M.F., & Haymes, E.M. (1996). The effects of heat and exercise on sweat iron loss. Medicine and Science in Sports and Exercise, 28(2), 197203. PubMed ID: 8775154 doi:10.1097/00005768-199602000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, A.J., Sawka, M.N., Epstein, Y., Decristofano, B., & Pandolf, K.B. (1987). Cooling different body surfaces during upper and lower body exercise. Journal of Applied Physiology, 63(3), 12181223. PubMed ID: 3654466 doi:10.1152/jappl.1987.63.3.1218

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1291 1291 302
Full Text Views 152 152 5
PDF Downloads 106 106 10