Restricted access

Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg−1·2 hr−1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg−1·2 hr−1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L−1·2 hr−1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L−1·2 hr−1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.

Kontro, Kozior, Whelehan, Amigo-Benavent, Norton, Carson, and Jakeman are with Food for Health Ireland, University College Dublin, Dublin, Ireland; and the Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland. Amigo-Benavent, Norton, Carson, and Jakeman are also with the Food and Health Research Group, Health Research Institute, University of Limerick, Limerick, Ireland. Kontro is also with the Faculty of Kinesiology, Human Performance Lab, University of Calgary, Calgary, AB, Canada.

Kontro (hilkka.kontro@ucalgary.ca) is corresponding author.
  • Alghannam, A.F., Gonzalez, J.T., & Betts, J.A. (2018). Restoration of muscle glycogen and functional capacity: Role of post-exercise carbohydrate and protein co-ingestion. Nutrients, 10(2), 253. doi:10.3390/nu10020253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergstrom, J., Hermansen, L., Hultman, E., & Saltin, B. (1967). Diet, muscle glycogen and physical performance. Acta Physiol Scand, 71(2), 140150. PubMed ID: 5584523 doi:10.1111/j.1748-1716.1967.tb03720.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blom, P.C., Høstmark, A.T., Vaage, O., Kardel, K.R., & Maehlum, S. (1987). Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Medicine & Science in Sports & Exercise, 19(5), 491496. PubMed ID: 3316904

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M., Slater, G., Broad, E.M., Haukka, J., Modulon, S., & Hopkins, W.G. (2003). Eating patterns and meal frequency of elite Australian athletes. International Journal of Sport Nutrition and Exercise Metabolism, 13(4), 521. PubMed ID: 14967874 doi:10.1123/ijsnem.13.4.521

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costill, D.L., Sherman, W.M., Fink, W.J., Maresh, C., Witten, M., & Miller, J.M. (1981). The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. The American Journal of Clinical Nutrition, 34(9), 18311836. PubMed ID: 7282610 doi:10.1093/ajcn/34.9.1831

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J., Desbrow, B., Sabapathy, S., Bellinger, P., McCartney, D., & Irwin, C. (2021). The effect of consuming carbohydrate with and without protein on the rate of muscle glycogen re-synthesis during short-term post-exercise recovery: A systematic review and meta-analysis. Sports Medicine-Open, 7(1), 9. PubMed ID: 33507402 doi:10.1186/s40798-020-00297-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Lugos, A.C., Luden, N.D., Faller, J.M., Akers, J.D., McKenzie, A.I., & Saunders, M.J. (2016). Supplemental protein during heavy cycling training and recovery impacts skeletal muscle and heart rate responses but not performance. Nutrients, 8(9), 10–14. doi:10.3390/nu8090550

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson-Stegall, L., McCleave, E., Ding, Z., Doerner, P.G., Liu, Y., Wang, B., … Ivy, J.L. (2011). Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. Journal of Nutrition and Metabolism, 2011, 1. PubMed ID: 21773022 doi:10.1155/2011/623182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M., Bangsbo, J., Jensen, J., Bibby, B.M., & Madsen, K. (2015). Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners. International Journal of Sport Nutrition and Exercise Metabolism, 25(2), 97109. PubMed ID: 25029703 doi:10.1123/ijsnem.2014-0083

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M., Bangsbo, J., Jensen, J., Krause-Jensen, M., Bibby, B.M., Sollie, O., … Madsen, K. (2016). Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists. Journal of the International Society of Sports Nutrition, 13(1), 9. PubMed ID: 26949378 doi:10.1186/s12970-016-0120-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, D., Morrison, P.J., Ding, Z., & Ivy, J.L. (2011). Effect of carbohydrate-protein supplementation postexercise on rat muscle glycogen synthesis and phosphorylation of proteins controlling glucose storage. Metabolism, 60(10), 14061415. PubMed ID: 21489581 doi:10.1016/j.metabol.2011.02.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikura, I.A., Quod, M., Strobel, N., Palfreeman, R., Civil, R., & Burke, L.M. (2019). Alternate-day low energy availability during spring classics in professional cyclists. International Journal of Sports Physiology and Performance, 14(9), 12331243. doi:10.1123/ijspp.2018-0842

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirshman, M.F., Goodyear, L.J., Wardzala, L.J., Horton, E.D., & Horton, E.S. (1990). Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle. Journal of Biological Chemistry, 265(2), 987991. doi:10.1016/S0021-9258(19)40147-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivy, J., Katz, A., Cutler, C., Sherman, W., & Coyle, E. (1988). Muscle glycogen synthesis after exercise: Effect of time of carbohydrate ingestion. Journal of Applied Physiology, 64(4), 14801485. PubMed ID: 3132449 doi:10.1152/jappl.1988.64.4.1480

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivy, J.L., Goforth, H.W. Jr., Damon, B.M., McCauley, T.R., Parsons, E.C., & Price, T.B. (2002). Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. Journal of Applied Physiology, 93(4), 13371344. doi:10.1152/japplphysiol.00394.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivy, J.L., & Kuo, C.H. (1998). Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiologica, 162(3), 295304. doi:10.1046/j.1365-201X.1998.0302e.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jentjens, R., & Jeukendrup, A. (2003). Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine, 33(2), 117144. PubMed ID: 12617691 doi:10.2165/00007256-200333020-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., & Wallis, G.A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26(Suppl 1), S28S37. doi:10.1055/s-2004-830512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keay, N., Francis, G., & Hind, K. (2018). Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. BMJ Open Sport and Exercise Medicine, 4(1), e000424. PubMed ID: 30364549 doi:10.1136/bmjsem-2018-000424

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kloby Nielsen, L.L., Tandrup Lambert, M.N., & Jeppesen, P.B. (2020). The effect of ingesting carbohydrate and proteins on athletic performance: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 12(5), 1483. doi:10.3390/nu12051483

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuiman, P., van Loon, L.J.C., Wouters, J., Hopman, M., & Mensink, M. (2019). Protein supplementation elicits greater gains in maximal oxygen uptake capacity and stimulates lean mass accretion during prolonged endurance training: A double-blind randomized controlled trial. The American Journal of Clinical Nutrition, 110(2), 508518. PubMed ID: 31240303 doi:10.1093/ajcn/nqz093

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozior, M., Jakeman, P.M., & Norton, C. (2019). Peri-training nutrition methods: Advancements to dietary assessment in an athletic population. Applied Physiology, Nutrition, and Metabolism, 45(5), 5–7. doi:10.1139/apnm-2019-0622

    • Search Google Scholar
    • Export Citation
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(863), 4. doi:10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manninen, A.H. (2009). Protein hydrolysates in sports nutrition. Nutrition & Metabolism, 6(1), 38. doi:10.1186/1743-7075-6-38

  • Margolis, L.M., Allen, J.T., Hatch-McChesney, A., & Pasiakos, S.M. (2021). Coingestion of carbohydrate and protein on muscle glycogen synthesis after exercise: A meta-analysis. Medicine & Science in Sports & Exercise, 53(2), 384393. PubMed ID: 32826640 doi:10.1249/MSS.0000000000002476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murgatroyd, P.R., Sonko, B.J., Wittekind, A., Goldberg, G.R., Ceesay, S.M., & Prentice, A.M. (1993). Non-invasive techniques for assessing carbohydrate flux: I. Measurement of depletion by indirect calorimetry. Acta Physiologica, 147(1), 9198. doi:10.1111/j.1748-1716.1993.tb09476.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishitani, S., Matsumura, T., Fujitani, S., Sonaka, I., Miura, Y., & Yagasaki, K. (2002). Leucine promotes glucose uptake in skeletal muscles of rats. Biochemical and Biophysical Research Communications, 299(5), 693696. PubMed ID: 12470633 doi:10.1016/S0006-291X(02)02717-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priego Quesada, J.I., Kerr, Z.Y., Bertucci, W.M., & Carpes, F.P. (2018). The categorization of amateur cyclists as research participants: Findings from an observational study. Journal of Sports Science, 36(17), 20182024. doi:10.1080/02640414.2018.1432239

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberson, P.A., Romero, M.A., Mumford, P.W., Osburn, S.C., Haun, C.T., Vann, C.G., … Roberts, M.D. (2018). Protein supplementation throughout 10 weeks of progressive run training is not beneficial for time trial improvement. Frontiers in Nutrition, 5, 97. PubMed ID: 30456213 doi:10.3389/fnut.2018.00097

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romano-Ely, B.C., Todd, M.K., Saunders, M.J., & Laurent, T.S. (2006). Effect of an isocaloric carbohydrate-protein-antioxidant drink on cycling performance. Medicine & Science in Sports & Exercise, 38(9), 16081616. PubMed ID: 16960522 doi:10.1249/01.mss.0000229458.11452.e9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rustad, P.I., Sailer, M., Cumming, K.T., Jeppesen, P.B., Kolnes, K.J., Sollie, O., … Jensen, J. (2016). Intake of protein plus carbohydrate during the first two hours after exhaustive cycling improves performance the following day. PLoS One, 11(4), e0153229. PubMed ID: 27078151 doi:10.1371/journal.pone.0153229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, M.J., Kane, M.D., & Todd, M.K. (2004). Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Medicine & Science in Sports & Exercise, 36(7), 12331238. PubMed ID: 15235331 doi:10.1249/01.MSS.0000132377.66177.9F

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, L.J. (2007). Application of protein or protein hydrolysates to improve postexercise recovery. International Journal of Sport Nutrition and Exercise Metabolism, 17, S104S117. doi:10.1123/ijsnem.17.s1.s104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, L.J., Saris, W.H., Kruijshoop, M., & Wagenmakers, A.J. (2000). Maximizing postexercise muscle glycogen synthesis: Carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. American Journal of Clinical Nutrition, 72(1), 106111. doi:10.1093/ajcn/72.1.106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witard, O.C., Jackman, S.R., Kies, A.K., Jeukendrup, A.E., & Tipton, K.D. (2011). Effect of increased dietary protein on tolerance to intensified training. Medicine & Science in Sports & Exercise, 43(4), 598607. PubMed ID: 20798660 doi:10.1249/MSS.0b013e3181f684c9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zello, G.A., Smith, J.M., Pencharz, P.B., & Ball, R.O. (1990). Development of a heating device for sampling arterialized venous blood from a hand vein. Annals of Clinical Biochemistry, 27(4), 366372. doi:10.1177/000456329002700414

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3339 3187 410
Full Text Views 194 146 4
PDF Downloads 154 124 6