Warm-Up Intensity Does Not Affect the Ergogenic Effect of Sodium Bicarbonate in Adult Men

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom
  • | 2 Canadian Sport Institute–Pacific, Victoria, BC, Canada
  • | 3 Exercise Science, Physical & Health Education, University of Victoria British Columbia, Victoria, BC, Canada
  • | 4 School of Health Science, Faculty of Health and Social Care Building, Robert Gordon University, Aberdeen, United Kingdom
  • | 5 Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
  • | 6 Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, Sao Paulo, Brazil
  • | 7 Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

This study determined the influence of a high- (HI) versus low-intensity (LI) cycling warm-up on blood acid-base responses and exercise capacity following ingestion of sodium bicarbonate (SB; 0.3 g/kg body mass) or a placebo (PLA; maltodextrin) 3 hr prior to warm-up. Twelve men (21 ± 2 years, 79.2 ± 3.6 kg body mass, and maximum power output [W max] 318 ± 36 W) completed a familiarization and four double-blind trials in a counterbalanced order: HI warm-up with SB, HI warm-up with PLA, LI warm-up with SB, and LI warm-up with PLA. LI warm-up was 15 min at 60% W max, while the HI warm-up (typical of elites) featured LI followed by 2 × 30 s (3-min break) at W max, finishing 30 min prior to a cycling capacity test at 110% W max. Blood bicarbonate and lactate were measured throughout. SB supplementation increased blood bicarbonate (+6.4 mmol/L; 95% confidence interval, CI [5.7, 7.1]) prior to greater reductions with HI warm-up (−3.8 mmol/L; 95% CI [−5.8, −1.8]). However, during the 30-min recovery, blood bicarbonate rebounded and increased in all conditions, with concentrations ∼5.3 mmol/L greater with SB supplementation (p < .001). Blood bicarbonate significantly declined during the cycling capacity test at 110%W max with greater reductions following SB supplementation (−2.4 mmol/L; 95% CI [−3.8, −0.90]). Aligned with these results, SB supplementation increased total work done during the cycling capacity test at 110% W max (+8.5 kJ; 95% CI [3.6, 13.4], ∼19% increase) with no significant main effect of warm-up intensity (+0.0 kJ; 95% CI [−5.0, 5.0]). Collectively, the results demonstrate that SB supplementation can improve HI cycling capacity irrespective of prior warm-up intensity, likely due to blood alkalosis.

Jones (Rebecca.Jones@beds.ac.uk) is corresponding author.

  • Atkinson, G., Williamson, P., & Batterham, A. (2019). Issues in the determination of “responders” and “non-responders” in physiological research. Experimental Physiology, 104, 12151225. https://doi.org/10.1113/EP087712

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, S.J., Vanhatalo, A., Wilkerson, D.P., Dimenna, F.J., & Jones, A.M. (2009). Optimizing the “priming” effect: Influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. Journal of Applied Physiology, 107(6), 17431756. https://doi.org/10.1152/japplphysiol.00810.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, D. (2003). Warm up II: Performance changes following active warm up and how to structure the warm up. Sports Medicine, 33(7), 483498. https://doi.org/10.2165/00007256-200333070-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, D., Edge, J., Davis, C., & Goodman, C. (2004). Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Medicine & Science in Sports & Exercise, 36(5), 807813. 10.1249/01.MSS.0000126392.20025.17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnley, M., Doust, J.H., Carter, H., & Jones, A.M. (2001). Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans. Experimental Physiology, 86(3), 417425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnley, M., Doust, J.H., & Jones, A.M. (2005). Effects of prior warm-up regime on severe-intensity cycling performance. Medicine & Science in Sports & Exercise, 37(5), 838845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, A.J., Hopkins, W.G., & Gore, C.J. (2011). Effects of acute alkalosis and acidosis on performance: A meta-analysis. Sports Medicine, 41(10), 801814. https://doi.org/10.2165/11591440-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, A.J., Slater, G.J., Gore, C.J., Dawson, B., & Burke, L.M. (2011). Effect of sodium bicarbonate on [HCO3-], pH, and gastrointestinal symptoms. International Journal of Sport Nutrition and Exercise Metabolism, 21(3), 189194. https://doi.org/10.1123/ijsnem.21.3.189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chatel, B., Bret, C., Edouard, P., Oullion, R., Freund, H., & Messonnier, L.A. (2016). Lactate recovery kinetics in response to high-intensity exercises. European Journal of Applied Physiology, 116(8), 14551465. https://doi.org/10.1007/s00421-016-3420-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, P.M., Shirai, Y., Ritz, C., & Nordsborg, N.B. (2017). Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving intense endurance exercise performance. Frontiers in Physiology, 8, 240. https://doi.org/10.3389/fphys.2017.00240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cogan, M.G., Maddox, D.A., Lucci, M.S., & Rector, F.C. Jr. (1979). Control of proximal bicarbonate reabsorption in normal and acidotic rats. Journal of Clinical Investigation, 64(5), 11681180. https://doi.org/10.1172/JCI109570

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. https://doi.org/10.3758/bf03193146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feher, J. (2012). 6.5—Acid–Base Physiology I: The bicarbonate buffer system and respiratory compensation. In J. Feher (Ed.), Quantitative human physiology (pp. 595601). Academic Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, R.H. (2016). The role of acidosis in fatigue: Pro perspective. Medicine & Science in Sports & Exercise, 48(11), 23352338. https://doi.org/10.1249/MSS.0000000000001043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froio de Araujo Dias, G., da Eira Silva, V., Painelli, V.S., Sale, C., Giannini Artioli, G., Gualano, B., & Saunders, B. (2015). (In)Consistencies in responses to sodium bicarbonate supplementation: A randomised, repeated measures, counterbalanced and double-blind study. PLoS One, 10(11), e0143086. https://doi.org/10.1371/journal.pone.0143086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, L.A., Rimmer, S., Sparks, S.A., McNaughton, L.R., & Higgins, M.F. (2019). Post-exercise supplementation of sodium bicarbonate improves acid base balance recovery and subsequent high-intensity boxing specific performance. Frontiers in Nutrition, 6, 155. https://doi.org/10.3389/fnut.2019.00155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heibel, A.B., Perim, P.H.L., Oliveira, L.F., McNaughton, L.R., & Saunders, B. (2018). Time to optimize supplementation: Modifying factors influencing the individual responses to extracellular buffering agents. Frontiers in Nutrition, 5, 35. https://doi.org/10.3389/fnut.2018.00035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingham, S.A., Fudge, B.W., Pringle, J.S., & Jones, A.M. (2013). Improvement of 800-m running performance with prior high-intensity exercise. International Journal of Sports Physiology and Performance, 8(1), 7783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R.L., Stellingwerff, T., Artioli, G.G., Saunders, B., Cooper, S., & Sale, C. (2016). Dose-response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses. International Journal of Sport Nutrition and Exercise Metabolism, 26(5), 445453. https://doi.org/10.1123/ijsnem.2015-0286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jubrias, S.A., Crowther, G.J., Shankland, E.G., Gronka, R.K., & Conley, K.E. (2003). Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. The Journal of Physiology, 553(Pt. 2), 589599. https://doi.org/10.1113/jphysiol.2003.045872

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juel, C. (1997). Lactate-proton cotransport in skeletal muscle. Physiological Reviews, 77(2), 321358.

  • Kuznetsova, A., Brockhoff, P.B., & Christensen, R.H.B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 26. https://doi.org/10.18637/jss.v082.i13

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matson, L.G., & Tran, Z.V. (1993). Effects of sodium bicarbonate ingestion on anaerobic performance: A meta-analytic review. International Journal of Sport Nutrition, 3(1), 228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J., Burke, L.M., Dvorak, J., Larson-Meyer, D.E., Peeling, P., Phillips, S.M., Rawson, E.S., Walsh, N.P., Garthe, I., Geyer, H., Meeusen, R., van Loon, L.J.C., Shirreffs, S.M., Spriet, L.L., Stuart, M., Vernec, A., Currell, K., Mohamed-Ali, V., Budgett, R.G.M., … Engebretsen, L. (2018). IOC consensus statement: Dietary supplements and the high-performance athlete. British Journal of Sports Medicine, 52(7), 439455. https://doi.org/10.1136/bjsports-2018-099027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGowan, C.J., Pyne, D.B., Thompson, K.G., & Rattray, B. (2015). Warm-up strategies for sport and exercise: Mechanisms and applications. Sports Medicine, 45(11), 15231546. https://doi.org/10.1007/s40279-015-0376-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNaughton, L.R. (1992). Bicarbonate ingestion: Effects of dosage on 60 s cycle ergometry. Journal of Sports Sciences, 10(5), 415423. https://doi.org/10.1080/02640419208729940

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirman, D. (2014). Growth curve analysis: A hands-on tutorial on using multilevel regression to analyze time course data. Proceedings of the Annual Meeting of the Cognitive Science Society, 36. Retrieved from https://escholarship.org/uc/item/1dp5q4k2

    • Search Google Scholar
    • Export Citation
  • Paton, C.D., & Hopkins, W.G. (2006). Variation in performance of elite cyclists from race to race. European Journal of Sport Science, 6(1), 2531. https://doi.org/10.1080/17461390500422796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peart, D.J., Siegler, J.C., & Vince, R.V. (2012). Practical recommendations for coaches and athletes: A meta-analysis of sodium bicarbonate use for athletic performance. Journal of Strength and Conditioning Research, 26(7), 19751983. https://doi.org/10.1519/JSC.0b013e3182576f3d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robergs, R., Hutchinson, K., Hendee, S., Madden, S., & Siegler, J. (2005). Influence of pre-exercise acidosis and alkalosis on the kinetics of acid-base recovery following intense exercise. International Journal of Sport Nutrition and Exercise Metabolism, 15(1), 5974. https://doi.org/10.1123/ijsnem.15.1.59

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sale, C., Saunders, B., Hudson, S., Wise, J.A., Harris, R.C., & Sunderland, C.D. (2011). Effect of beta-alanine plus sodium bicarbonate on high-intensity cycling capacity. Medicine & Science in Sports & Exercise, 43(10), 19721978. https://doi.org/10.1249/MSS.0b013e3182188501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, B., Painelli, V.S., de Oliveira, L.F., Silva, V.E., da Silva, R.P., Riani, L., Franchi, M., Gonçalves, L.S., Harris, R.C., Roschel, H., Giannini Artioli, G., Sale, C., & Gualano, B. (2017). Twenty-four weeks of beta-alanine supplementation on carnosine content, related genes, and exercise. Medicine & Science in Sports & Exercise, 49(5), 896906. https://doi.org/10.1249/MSS.0000000000001173

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, B., Sale, C., Harris, R.C., Morris, J.G., & Sunderland, C. (2013). Reliability of a high-intensity cycling capacity test. Journal of Science and Medicine in Sport, 16(3), 286289. https://doi.org/10.1016/j.jsams.2012.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, B., Sale, C., Harris, R.C., & Sunderland, C. (2014). Sodium bicarbonate and high-intensity-cycling capacity: Variability in responses. International Journal of Sports Physiology and Performance, 9(4), 627632. https://doi.org/10.1123/ijspp.2013-0295

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinton, P.A., Hemingway, B.S., Saunders, B., Gualano, B., & Dolan, E. (2018). A statistical framework to interpret individual response to intervention: Paving the way for personalized nutrition and exercise prescription. Frontiers in Nutrition, 5, 41. https://doi.org/10.3389/fnut.2018.00041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodward, M., & Debold, E.P. (2018). Acidosis and phosphate directly reduce myosin’s force-generating capacity through distinct molecular mechanisms. Frontiers in Physiology, 9, 862. https://doi.org/10.3389/fphys.2018.00862

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 529 529 372
Full Text Views 113 113 53
PDF Downloads 48 48 29