Warm-Up Intensity Does Not Affect the Ergogenic Effect of Sodium Bicarbonate in Adult Men

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Rebecca L. JonesInstitute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom
Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom

Search for other papers by Rebecca L. Jones in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9657-9448*
,
Trent StellingwerffCanadian Sport Institute–Pacific, Victoria, BC, Canada
Exercise Science, Physical & Health Education, University of Victoria British Columbia, Victoria, BC, Canada

Search for other papers by Trent Stellingwerff in
Current site
Google Scholar
PubMed
Close
*
,
Paul SwintonSchool of Health Science, Faculty of Health and Social Care Building, Robert Gordon University, Aberdeen, United Kingdom

Search for other papers by Paul Swinton in
Current site
Google Scholar
PubMed
Close
*
,
Guilherme Giannini ArtioliApplied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil

Search for other papers by Guilherme Giannini Artioli in
Current site
Google Scholar
PubMed
Close
*
,
Bryan SaundersApplied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, Sao Paulo, Brazil

Search for other papers by Bryan Saunders in
Current site
Google Scholar
PubMed
Close
*
, and
Craig SaleMusculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom

Search for other papers by Craig Sale in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study determined the influence of a high- (HI) versus low-intensity (LI) cycling warm-up on blood acid-base responses and exercise capacity following ingestion of sodium bicarbonate (SB; 0.3 g/kg body mass) or a placebo (PLA; maltodextrin) 3 hr prior to warm-up. Twelve men (21 ± 2 years, 79.2 ± 3.6 kg body mass, and maximum power output [Wmax] 318 ± 36 W) completed a familiarization and four double-blind trials in a counterbalanced order: HI warm-up with SB, HI warm-up with PLA, LI warm-up with SB, and LI warm-up with PLA. LI warm-up was 15 min at 60% Wmax, while the HI warm-up (typical of elites) featured LI followed by 2 × 30 s (3-min break) at Wmax, finishing 30 min prior to a cycling capacity test at 110% Wmax. Blood bicarbonate and lactate were measured throughout. SB supplementation increased blood bicarbonate (+6.4 mmol/L; 95% confidence interval, CI [5.7, 7.1]) prior to greater reductions with HI warm-up (−3.8 mmol/L; 95% CI [−5.8, −1.8]). However, during the 30-min recovery, blood bicarbonate rebounded and increased in all conditions, with concentrations ∼5.3 mmol/L greater with SB supplementation (p < .001). Blood bicarbonate significantly declined during the cycling capacity test at 110%Wmax with greater reductions following SB supplementation (−2.4 mmol/L; 95% CI [−3.8, −0.90]). Aligned with these results, SB supplementation increased total work done during the cycling capacity test at 110% Wmax (+8.5 kJ; 95% CI [3.6, 13.4], ∼19% increase) with no significant main effect of warm-up intensity (+0.0 kJ; 95% CI [−5.0, 5.0]). Collectively, the results demonstrate that SB supplementation can improve HI cycling capacity irrespective of prior warm-up intensity, likely due to blood alkalosis.

Jones (Rebecca.Jones@beds.ac.uk) is corresponding author.

  • Collapse
  • Expand
  • Atkinson, G., Williamson, P., & Batterham, A. (2019). Issues in the determination of “responders” and “non-responders” in physiological research. Experimental Physiology, 104, 12151225. https://doi.org/10.1113/EP087712

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, S.J., Vanhatalo, A., Wilkerson, D.P., Dimenna, F.J., & Jones, A.M. (2009). Optimizing the “priming” effect: Influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. Journal of Applied Physiology, 107(6), 17431756. https://doi.org/10.1152/japplphysiol.00810.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, D. (2003). Warm up II: Performance changes following active warm up and how to structure the warm up. Sports Medicine, 33(7), 483498. https://doi.org/10.2165/00007256-200333070-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, D., Edge, J., Davis, C., & Goodman, C. (2004). Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Medicine & Science in Sports & Exercise, 36(5), 807813. 10.1249/01.MSS.0000126392.20025.17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnley, M., Doust, J.H., Carter, H., & Jones, A.M. (2001). Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans. Experimental Physiology, 86(3), 417425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnley, M., Doust, J.H., & Jones, A.M. (2005). Effects of prior warm-up regime on severe-intensity cycling performance. Medicine & Science in Sports & Exercise, 37(5), 838845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, A.J., Hopkins, W.G., & Gore, C.J. (2011). Effects of acute alkalosis and acidosis on performance: A meta-analysis. Sports Medicine, 41(10), 801814. https://doi.org/10.2165/11591440-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, A.J., Slater, G.J., Gore, C.J., Dawson, B., & Burke, L.M. (2011). Effect of sodium bicarbonate on [HCO3-], pH, and gastrointestinal symptoms. International Journal of Sport Nutrition and Exercise Metabolism, 21(3), 189194. https://doi.org/10.1123/ijsnem.21.3.189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chatel, B., Bret, C., Edouard, P., Oullion, R., Freund, H., & Messonnier, L.A. (2016). Lactate recovery kinetics in response to high-intensity exercises. European Journal of Applied Physiology, 116(8), 14551465. https://doi.org/10.1007/s00421-016-3420-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, P.M., Shirai, Y., Ritz, C., & Nordsborg, N.B. (2017). Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving intense endurance exercise performance. Frontiers in Physiology, 8, 240. https://doi.org/10.3389/fphys.2017.00240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cogan, M.G., Maddox, D.A., Lucci, M.S., & Rector, F.C. Jr. (1979). Control of proximal bicarbonate reabsorption in normal and acidotic rats. Journal of Clinical Investigation, 64(5), 11681180. https://doi.org/10.1172/JCI109570

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. https://doi.org/10.3758/bf03193146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feher, J. (2012). 6.5—Acid–Base Physiology I: The bicarbonate buffer system and respiratory compensation. In J. Feher (Ed.), Quantitative human physiology (pp. 595601). Academic Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, R.H. (2016). The role of acidosis in fatigue: Pro perspective. Medicine & Science in Sports & Exercise, 48(11), 23352338. https://doi.org/10.1249/MSS.0000000000001043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froio de Araujo Dias, G., da Eira Silva, V., Painelli, V.S., Sale, C., Giannini Artioli, G., Gualano, B., & Saunders, B. (2015). (In)Consistencies in responses to sodium bicarbonate supplementation: A randomised, repeated measures, counterbalanced and double-blind study. PLoS One, 10(11), e0143086. https://doi.org/10.1371/journal.pone.0143086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, L.A., Rimmer, S., Sparks, S.A., McNaughton, L.R., & Higgins, M.F. (2019). Post-exercise supplementation of sodium bicarbonate improves acid base balance recovery and subsequent high-intensity boxing specific performance. Frontiers in Nutrition, 6, 155. https://doi.org/10.3389/fnut.2019.00155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heibel, A.B., Perim, P.H.L., Oliveira, L.F., McNaughton, L.R., & Saunders, B. (2018). Time to optimize supplementation: Modifying factors influencing the individual responses to extracellular buffering agents. Frontiers in Nutrition, 5, 35. https://doi.org/10.3389/fnut.2018.00035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingham, S.A., Fudge, B.W., Pringle, J.S., & Jones, A.M. (2013). Improvement of 800-m running performance with prior high-intensity exercise. International Journal of Sports Physiology and Performance, 8(1), 7783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R.L., Stellingwerff, T., Artioli, G.G., Saunders, B., Cooper, S., & Sale, C. (2016). Dose-response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses. International Journal of Sport Nutrition and Exercise Metabolism, 26(5), 445453. https://doi.org/10.1123/ijsnem.2015-0286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jubrias, S.A., Crowther, G.J., Shankland, E.G., Gronka, R.K., & Conley, K.E. (2003). Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. The Journal of Physiology, 553(Pt. 2), 589599. https://doi.org/10.1113/jphysiol.2003.045872

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juel, C. (1997). Lactate-proton cotransport in skeletal muscle. Physiological Reviews, 77(2), 321358.

  • Kuznetsova, A., Brockhoff, P.B., & Christensen, R.H.B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 26. https://doi.org/10.18637/jss.v082.i13

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matson, L.G., & Tran, Z.V. (1993). Effects of sodium bicarbonate ingestion on anaerobic performance: A meta-analytic review. International Journal of Sport Nutrition, 3(1), 228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J., Burke, L.M., Dvorak, J., Larson-Meyer, D.E., Peeling, P., Phillips, S.M., Rawson, E.S., Walsh, N.P., Garthe, I., Geyer, H., Meeusen, R., van Loon, L.J.C., Shirreffs, S.M., Spriet, L.L., Stuart, M., Vernec, A., Currell, K., Mohamed-Ali, V., Budgett, R.G.M., … Engebretsen, L. (2018). IOC consensus statement: Dietary supplements and the high-performance athlete. British Journal of Sports Medicine, 52(7), 439455. https://doi.org/10.1136/bjsports-2018-099027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGowan, C.J., Pyne, D.B., Thompson, K.G., & Rattray, B. (2015). Warm-up strategies for sport and exercise: Mechanisms and applications. Sports Medicine, 45(11), 15231546. https://doi.org/10.1007/s40279-015-0376-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNaughton, L.R. (1992). Bicarbonate ingestion: Effects of dosage on 60 s cycle ergometry. Journal of Sports Sciences, 10(5), 415423. https://doi.org/10.1080/02640419208729940

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirman, D. (2014). Growth curve analysis: A hands-on tutorial on using multilevel regression to analyze time course data. Proceedings of the Annual Meeting of the Cognitive Science Society, 36. Retrieved from https://escholarship.org/uc/item/1dp5q4k2

    • Search Google Scholar
    • Export Citation
  • Paton, C.D., & Hopkins, W.G. (2006). Variation in performance of elite cyclists from race to race. European Journal of Sport Science, 6(1), 2531. https://doi.org/10.1080/17461390500422796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peart, D.J., Siegler, J.C., & Vince, R.V. (2012). Practical recommendations for coaches and athletes: A meta-analysis of sodium bicarbonate use for athletic performance. Journal of Strength and Conditioning Research, 26(7), 19751983. https://doi.org/10.1519/JSC.0b013e3182576f3d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robergs, R., Hutchinson, K., Hendee, S., Madden, S., & Siegler, J. (2005). Influence of pre-exercise acidosis and alkalosis on the kinetics of acid-base recovery following intense exercise. International Journal of Sport Nutrition and Exercise Metabolism, 15(1), 5974. https://doi.org/10.1123/ijsnem.15.1.59

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sale, C., Saunders, B., Hudson, S., Wise, J.A., Harris, R.C., & Sunderland, C.D. (2011). Effect of beta-alanine plus sodium bicarbonate on high-intensity cycling capacity. Medicine & Science in Sports & Exercise, 43(10), 19721978. https://doi.org/10.1249/MSS.0b013e3182188501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, B., Painelli, V.S., de Oliveira, L.F., Silva, V.E., da Silva, R.P., Riani, L., Franchi, M., Gonçalves, L.S., Harris, R.C., Roschel, H., Giannini Artioli, G., Sale, C., & Gualano, B. (2017). Twenty-four weeks of beta-alanine supplementation on carnosine content, related genes, and exercise. Medicine & Science in Sports & Exercise, 49(5), 896906. https://doi.org/10.1249/MSS.0000000000001173

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, B., Sale, C., Harris, R.C., Morris, J.G., & Sunderland, C. (2013). Reliability of a high-intensity cycling capacity test. Journal of Science and Medicine in Sport, 16(3), 286289. https://doi.org/10.1016/j.jsams.2012.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, B., Sale, C., Harris, R.C., & Sunderland, C. (2014). Sodium bicarbonate and high-intensity-cycling capacity: Variability in responses. International Journal of Sports Physiology and Performance, 9(4), 627632. https://doi.org/10.1123/ijspp.2013-0295

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinton, P.A., Hemingway, B.S., Saunders, B., Gualano, B., & Dolan, E. (2018). A statistical framework to interpret individual response to intervention: Paving the way for personalized nutrition and exercise prescription. Frontiers in Nutrition, 5, 41. https://doi.org/10.3389/fnut.2018.00041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodward, M., & Debold, E.P. (2018). Acidosis and phosphate directly reduce myosin’s force-generating capacity through distinct molecular mechanisms. Frontiers in Physiology, 9, 862. https://doi.org/10.3389/fphys.2018.00862

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3638 2734 262
Full Text Views 143 27 2
PDF Downloads 101 47 4