Acute and Chronic Citrulline Malate Supplementation on Muscle Contractile Properties and Fatigue Rate of the Quadriceps

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Human Performance Laboratory, Department of Health & Kinesiology, Texas A&M University-Kingsville, Kingsville, TX, USA
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

This study compared the acute and chronic impact of citrulline malate (CM) supplementation on muscle contractile properties and fatigue rate of the quadriceps. Eighteen recreationally trained males consumed both a placebo (PL) and CM treatment for two separate dosing periods. The first experimental testing session for each dosing period was considered the baseline day, the second session the acute day, and the third session the chronic day, which followed seven consecutive days of supplementation. All testing sessions included exercising on a cycle ergometer at 50%–60% of their max power output for 30 min followed by performing the Thorstensson test on an isokinetic dynamometer. A two-way (Supplement × Time) analysis of variance with repeated measures resulted in no significant interactions (p > .05) (PL: baseline day, acute day, chronic day vs. CM: baseline day, acute day, chronic day) for peak power (in watts) (469 ± 81, 490 ± 97, 502 ± 99 vs. 464 ± 85, 480 ± 103, 501 ± 81); peak torque (in newton meters) (150 ± 26, 157 ± 32, 161 ± 31 vs. 149 ± 27, 156 ± 33, 161 ± 26); fatigue rate (in percentage) (57 ± 9, 57 ± 10, 58 ± 9 vs. 57 ± 10, 56 ± 9, 58 ± 9); and heart rate (in beats per minute) (156 ± 17, 146 ± 13, 146 ± 9 vs. 155 ± 11, 146 ± 11, 146 ± 9). The results of this study suggest that neither acute nor chronic supplementation of CM had an effect on recovery or fatigue rate of the quadriceps.

  • Bailey, S.J., Blackwell, J.R., Lord, T., Vanhatalo, A., Winyard, P.G., & Jones, A.M. (2015). L-Citrulline supplementation improves O2 uptake kinetics and high-intensity exercise performance in humans. Journal of Applied Physiology, 119(4), 385395. https://doi.org/10.1152/japplphysiol.00192.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, S.J., Blackwell, J.R., Williams, E., Vanhatalo, A., Wylie, L.J., Winyard, P.G., & Jones, A.M. (2016). Two weeks of watermelon juice supplementation improves nitric oxide bioavailability but not endurance exercise performance in humans. Nitric Oxide, 59, 1020. https://doi.org/10.1016/j.niox.2016.06.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37(3), 379384. https://doi.org/10.3758/BF03192707

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendahan, D., Mattei, J.P., Ghattas, B., Confort-Gouny, S., Le Guern, M.E., & Cozzone, P.J. (2002). Citrulline/malate promotes aerobic energy production in human exercising muscle. British Journal of Sports Medicine, 36(4), 282289. https://doi.org/10.1136/bjsm.36.4.282

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckinx, F., Gouspillou, G., Carvalho, L.P., Marcangeli, V., El Hajj Boutros, G., Dulac, M., Noirez, P., Morais, J.A., Gaudreau, P., & Aubertin-Leheudre, M. (2018). Effect of high-intensity interval training combined with L-citrulline supplementation on functional capacities and muscle function in dynapenic-obese older adults. Journal of Clinical Medicine, 7(12), 561. https://doi.org/10.3390/jcm7120561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curis, E., Nicolis, I., Moinard, C., Osowska, S., Zerrouk, N., Benazeth, S., & Cynober, L. (2005). Almost all about citrulline in mammals. Amino Acids, 29(3), 177205. https://doi.org/10.1007/s00726-005-0235-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farney, T.M., Bliss, M.V., Hearon, C.M., & Salazar, D.A. (2019). The effect of citrulline malate supplementation on muscle fatigue among healthy participants. Journal of Strength and Conditioning Research, 33(9), 24642470. https://doi.org/10.1519/JSC.0000000000002356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Figueroa, A., Alvarez-Alvarado, S., Jaime, S.J., & Kalfon, R. (2016). L-citrulline supplementation attenuates blood pressure, wave reflection and arterial stiffness responses to metaboreflex and cold stress in overweight men. British Journal of Nutrition, 116(2), 279285. https://doi.org/10.1017/S0007114516001811

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Figueroa, A., Wong, A., Hooshmand, S., & Sanchez-Gonzalez, M.A. (2013). Effects of watermelon supplementation on arterial stiffness and wave reflection amplitude in postmenopausal women. Menopause, 20(5), 573577. https://doi.org/10.1097/gme.0b013e3182733794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, J.M., Gray, M., Jensen, A., Stone, M.S., & Vincenzo, J.L. (2016). Acute citrulline-malate supplementation improves maximal strength and anaerobic power in female, masters athletes tennis players. European Journal of Sport Science, 16(8), 10951103. https://doi.org/10.1080/17461391.2016.1158321

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, J.M., Gray, M., Wethington, L.N., Stone, M.S., Stewart, R.W., Jr., & Moyen, N.E. (2017). Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. European Journal of Nutrition, 56(2), 775784. https://doi.org/10.1007/s00394-015-1124-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzales, J.U., Raymond, A., Ashley, J., & Kim, Y. (2017). Does L-citrulline supplementation improve exercise blood flow in older adults? Experimental Physiology, 102(12), 16611671. https://doi.org/10.1113/EP086587

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, A.M., & Trexler, E.T. (2020). Effects of citrulline supplementation on exercise performance in humans: A review of the current literature. Journal of Strength and Conditioning Research, 34(5), 14801495. https://doi.org/10.1519/JSC.0000000000003426

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, I.Y., Schutzler, S.E., Schrader, A., Spencer, H.J., Azhar, G., Deutz, N.E., & Wolfe, R.R. (2015). Acute ingestion of citrulline stimulates nitric oxide synthesis but does not increase blood flow in healthy young and older adults with heart failure. American Journal of Physiology—Endocrinology and Metabolism, 309(11), E915E924. https://doi.org/10.1152/ajpendo.00339.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morita, M., Sakurada, M., Watanabe, F., Yamasaki, T., Doi, H., Ezaki, H., Morishita, K., & Miyakex, T. (2013). Effects of oral L-citrulline supplementation on lipoprotein oxidation and endothelial dysfunction in humans with vasospastic angina. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry, 13(3), 214220. https://doi.org/10.2174/18715222113139990008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, S.M., Jr. (2004). Enzymes of arginine metabolism. Journal of Nutrition, 134(Suppl. 10), 2743S2747S; discussion 2765S-2767S. https://doi.org/10.1093/jn/134.10.2743S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mutch, B.J., & Banister, E.W. (1983). Ammonia metabolism in exercise and fatigue: A review. Medicine & Science in Sports & Exercise, 15(1), 4150. https://doi.org/10.1249/00005768-198315010-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orozco-Gutierrez, J.J., Castillo-Martinez, L., Orea-Tejeda, A., Vazquez-Diaz, O., Valdespino-Trejo, A., Narvaez-David, R., Keirns-Davis, C., Carrasco-Ortiz, O., Navarro-Navarro, A., & Sanchez-Santillan, R. (2010). Effect of L-arginine or L-citrulline oral supplementation on blood pressure and right ventricular function in heart failure patients with preserved ejection fraction. Cardiology Journal, 17(6), 612618. https://www.ncbi.nlm.nih.gov/pubmed/21154265

    • Search Google Scholar
    • Export Citation
  • Perez-Guisado, J., & Jakeman, P.M. (2010). Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. Journal of Strength and Conditioning Research, 24(5), 12151222. https://doi.org/10.1519/JSC.0b013e3181cb28e0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, A.L., Webber, D., de Charmoy, R., Jackson, G.E., & Ravenscroft, N. (2014). Malic acid supplementation increases urinary citrate excretion and urinary pH: Implications for the potential treatment of calcium oxalate stone disease. Journal of Endourology, 28(2), 229236. https://doi.org/10.1089/end.2013.0477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanelle, S.T., McLaughlin, K.L., & Crouse, S.F. (2020). One week of L-citrulline supplementation improves performance in trained cyclists. Journal of Strength and Conditioning Research, 34(3), 647652. https://doi.org/10.1519/JSC.0000000000003418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sureda, A., Cordova, A., Ferrer, M.D., Perez, G., Tur, J.A., & Pons, A. (2010). L-citrulline-malate influence over branched chain amino acid utilization during exercise. European Journal of Applied Physiology, 110(2), 341351. https://doi.org/10.1007/s00421-010-1509-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sureda, A., & Pons, A. (2012). Arginine and citrulline supplementation in sports and exercise: Ergogenic nutrients? Medicine and Sport Science, 59, 1828. https://doi.org/10.1159/000341937

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorstensson, A., & Karlsson, J. (1976). Fatiguability and fibre composition of human skeletal muscle. Acta Physiologica Scandinavica, 98(3), 318322. https://doi.org/10.1111/j.1748-1716.1976.tb10316.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trexler, E.T., Keith, D.S., Schwartz, T.A., Ryan, E.D., Stoner, L., Persky, A.M., & Smith-Ryan, A.E. (2019). Effects of citrulline malate and beetroot juice supplementation on blood flow, energy metabolism, and performance during maximum effort leg extension exercise. Journal of Strength and Conditioning Research, 33(9), 23212329. https://doi.org/10.1519/JSC.0000000000003286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trexler, E.T., Persky, A.M., Ryan, E.D., Schwartz, T.A., Stoner, L., & Smith-Ryan, A.E. (2019). Acute effects of citrulline supplementation on high-intensity strength and power performance: A systematic review and meta-analysis. Sports Medicine, 49(5), 707718. https://doi.org/10.1007/s40279-019-01091-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wax, B., Kavazis, A.N., & Luckett, W. (2016). Effects of supplemental citrulline-malate ingestion on blood lactate, cardiovascular dynamics, and resistance exercise performance in trained males. Journal of Dietary Supplements, 13(3), 269282. https://doi.org/10.3109/19390211.2015.1008615

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wax, B., Kavazis, A.N., Weldon, K., & Sperlak, J. (2015). Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weightlifters. Journal of Strength and Conditioning Research, 29(3), 786792. https://doi.org/10.1519/JSC.0000000000000670

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 706 706 507
Full Text Views 111 111 49
PDF Downloads 57 57 29