Repeated-Sprint Exercise in the Heat Increases Indirect Markers of Gastrointestinal Damage in Well-Trained Team-Sport Athletes

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
  • | 2 Australian Institute of Sport, Bruce, ACT, Australia
  • | 3 Institute of Health and Sport, Victoria University, Melbourne, VIC, Australia
  • | 4 School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia
  • | 5 Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
Restricted access

Introduction: Athletes engaged in repeated-sprint training in the heat can be at an increased risk of gastrointestinal ischemia and damage in response to a redistribution of blood to working skeletal muscles and the skin. This study investigated the effects of repeated sprinting in hot and cool conditions on markers of gastrointestinal damage. Methods: Twenty-five, well-trained, nonheat acclimated male team-sport athletes completed a five-session, repeated-sprint training regimen over 7 days in either HOT (40 °C and 40% relative humidity [RH]) or COOL (20 °C and 40% RH) conditions. Participants underwent a 20-min warm-up and four sets of 5 × 6-s maximal cycling sprints, with 24-s rest and 5-min recovery between sets. Venous blood was collected pre-, post-, and 1 hr postexercise and analyzed for intestinal fatty acid binding protein, lipopolysaccharide binding protein, soluble CD14, and heat-shock protein. Results: Intestinal fatty acid binding protein concentrations were significantly increased (p < .004) postexercise (593 and 454 pg/ml) and 1 hr postexercise (466 and 410 pg/ml) on both Days 1 and 5 in HOT. Soluble CD14 increased by 398 and 308 ng/ml postexercise (p = .041), and lipopolysaccharide binding protein increased by 1,694 ng/ml postexercise on Day 1 in HOT (p < .05) and by 1,520 ng/ml on Day 5 in COOL (p = .026). Core and skin temperature, rating of perceived exertion, and thermal sensation were higher (p < .05) in HOT on Days 1 and 5 during sprinting. Conclusions: Repeated sprinting in the heat induced greater thermal strain and mild changes in gastrointestinal damage, likely attributable to the combination of environmental conditions and maximal-intensity exercise.

  • Bishop, D., & Girard, O. (2013). Determinants of team-sport performance: Implications for altitude training by team-sport athletes. British Journal of Sports Medicine, 47(Suppl. 1), i17i21. https://doi.org/10.1136/bjsports-2013-092950

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, D., Girard, O., & Mendez-Villanueva, A. (2011). Repeated-sprint ability—Part II. Sports Medicine, 41(9), 741756. https://doi.org/10.2165/11590560-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377381. https://doi.org/10.1249/00005768-198205000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castle, P., Mackenzie, R.W., Maxwell, N., Webborn, A.D., & Watt, P.W. (2011). Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect. Journal of Sports Sciences, 29(11), 11251134. https://doi.org/10.1080/02640414.2011.583673

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, R.J.S., Gaskell, S.K., McCubbin, A.J., & Snipe, R.M.J. (2020). Exertional-heat stress-associated gastrointestinal perturbations during Olympic sports: Management strategies for athletes preparing and competing in the 2020 Tokyo Olympic Games. Temperature, 7(1), 5888. https://doi.org/10.1080/23328940.2019.1597676

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flynn, M.G., McFarlin, B.K., & Markofski, M.M. (2007). The anti-inflammatory actions of exercise training. American Journal of Lifestyle Medicine, 1(3), 220235. https://doi.org/10.1177/1559827607300283

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagge, A.P., Stolwijk, J.A.J., & Saltin, B. (1969). Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures. Environmental Research, 2(3), 209229. https://doi.org/10.1016/0013-9351(69)90037-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girard, O., Brocherie, F., & Bishop, D.J. (2015). Sprint performance under heat stress: A review. Scandinavian Journal of Medicine and Science in Sports, 25(Suppl. 1), 7989. https://doi.org/10.1111/sms.12437

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karhu, E., Forsgård, R.A., Alanko, L., Alfthan, H., Pussinen, P., Hämäläinen, E., & Korpela, R. (2017). Exercise and gastrointestinal symptoms: Running-induced changes in intestinal permeability and markers of gastrointestinal function in asymptomatic and symptomatic runners. European Journal of Applied Physiology, 117(12), 25192526. https://doi.org/10.1007/s00421-017-3739-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitchens, R.L., & Thompson, P.A. (2005). Modulatory effects of sCD14 and LBP on LPS-host cell interactions. Journal of Endotoxin Research, 11(4), 225229. https://doi.org/10.1177/09680519050110040701

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B.J., & Thake, C.D. (2017). Heat and hypoxic acclimation increase monocyte heat shock protein 72 but do not attenuate inflammation following hypoxic exercise. Frontiers in Physiology, 8, Article 811. https://doi.org/10.3389/fphys.2017.00811

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, C.L., Pyne, D., Horn, P., Kalz, A., Saunders, P., Peake, J., Suzuki, K., Wilson, G., & Mackinnon, L.T. (2009). The effects of increased endurance training load on biomarkers of heat intolerance during intense exercise in the heat. Applied Physiology Nutrition and Metabolism, 34(4), 616624. https://doi.org/10.1139/H09-021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locke, M. (1997). The cellular stress response to exercise: Role of stress proteins. Exercise and Sport Science Reviews, 25, 105136. https://doi.org/10.1249/00003677-199700250-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloyan, A., Palmon, A., & Horowitz, M. (1999). Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress. American Journal of Physiology, 276(5), R1506R1515. https://doi.org/10.1152/ajpregu.1999.276.5.R1506

    • Search Google Scholar
    • Export Citation
  • Nielsen, H.B., Svendsen, L.B., Jensen, T.H., & Secher, N.H. (1995). Exercise-induced gastric mucosal acidosis. Medicine & Science in Sports & Exercise, 27(7), 10031006. https://journals.lww.com/acsm-msse/Fulltext/1995/07000/Exercise_induced_gastric_mucosal_acidosis.8.aspx

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nybo, L., Rasmussen, P., & Sawka, M.N. (2014). Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Comprehensive Physiology, 4(2), 657689. https://doi.org/10.1002/cphy.c130012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, J.O., Stewart, I.B., Beagley, K.W., & Minett, G.M. (2019). The effect of cycling in the heat on gastrointestinal-induced damage and neuromuscular fatigue. European Journal of Applied Physiology, 119(8), 18291840. https://doi.org/10.1007/s00421-019-04172-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otte, J.A., Oostveen, E., Geelkerken, R.H., Groeneveld, A.B.J., & Kolkman, J.J. (2001). Exercise induces gastric ischemia in healthy volunteers: A tonometry study. Journal of Applied Physiology, 91(2), 866871. https://doi.org/10.1152/jappl.2001.91.2.866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Périard, J.D., Pyne, D.B., Bishop, D.J., Wallett, A., & Girard, O. (2020). Short-term repeated-sprint training in hot and cool conditions similarly benefits performance in team-sport athletes. Frontiers in Physiology, 11, 1023. https://doi.org/10.3389/fphys.2020.01023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Périard, J.D., Racinais, S., & Sawka, M.N. (2015). Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scandinavian Journal of Medicine & Science in Sports, 25(Suppl. 1), 2038. https://doi.org/10.1111/sms.12408

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Périard, J.D., Ruell, P.A., Thompson, M.W., & Caillaud, C. (2015). Moderate- and high-intensity exhaustive exercise in the heat induce a similar increase in monocyte Hsp72. Cell Stress & Chaperones, 20(6), 10371042. https://doi.org/10.1007/s12192-015-0631-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H.P., De Vries, W.R., Vanberge-Henegouwen, G.P., & Akkermans, L.M. (2001). Potential benefits and hazards of physical activity and exercise on the gastrointestinal tract. Gut, 48(3), 435439. https://doi.org/10.1136/gut.48.3.435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pires, W., Veneroso, C.E., Wanner, S.P., Pacheco, D.A.S., Vaz, G.C., Amorim, F.T., Tonoli, C., Soares, D.D., & Coimbra, C.C. (2017). Association between exercise-induced hyperthermia and intestinal permeability: A systematic review. Sports Medicine, 47(7), 13891403. https://doi.org/10.1007/s40279-016-0654-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pugh, J.N., Impey, S.G., Doran, D.A., Fleming, S.C., Morton, J.P., & Close, G.L. (2017). Acute high-intensity interval running increases markers of gastrointestinal damage and permeability but not gastrointestinal symptoms. Applied Physiology, Nutrition, and Metabolism, 42(9), 941947. https://doi.org/10.1139/apnm-2016-0646

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pyne, D.B., Guy, J.H., & Edwards, A.M. (2014). Managing heat and immune stress in athletes with evidence-based strategies. International Journal of Sports Physiology and Performance, 9(5), 744750. https://doi.org/10.1123/ijspp.2014-0232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, N.L. (1964). A new weighting system for mean surface temperature of the human body. Journal of Applied Physiology, 19(3), 531533. https://doi.org/10.1152/jappl.1964.19.3.531

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rehrer, N., Smets, A., Reynaert, H., Goes, E.V.A., & Meirleir, K. (2001). Effect of exercise on portal blood flow in man. Medicine & Science in Sports & Exercise, 33(9), 15331537. https://doi.org/10.1097/00005768-200109000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, R.R. (2011). Old and new findings on lipopolysaccharide-binding protein: A soluble pattern-recognition molecule. Biochemical Society Transactions, 39(4), 989993. https://doi.org/10.1042/BST0390989

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheahen, B.L., Fel, J.W., Zadow, E.K., Hartley, T.F., & Kitic, C.M. (2018). Intestinal damage following short-duration exercise at the same relative intensity is similar in temperate and hot environments. Applied Physiology Nutrition and Metabolism, 43(12), 13141320. https://doi.org/10.1139/apnm-2018-0057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, N.M., & Kilding, A.E. (2009). Aerobic conditioning for team sport athletes. Sports Medicine, 39(8), 615642. https://doi.org/10.2165/00007256-200939080-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sunderland, C., Morris, J.G., & Nevill, M. (2008). A heat acclimation protocol for team sports. British Journal of Sports Medicine, 42(5), 327333. https://doi.org/10.1136/bjsm.2007.034207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ter Steege, R.W.F., & Kolkman, J.J. (2012). Review article: The pathophysiology and management of gastrointestinal symptoms during physical exercise, and the role of splanchnic blood flow. Alimentary Pharmacology and Therapeutics, 35(5), 516528. https://doi.org/10.1111/j.1365-2036.2011.04980.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tikuisis, P., McLellan, T.M., & Selkirk, G. (2002). Perceptual versus physiological heat strain during exercise-heat stress. Medicine & Science in Sports & Exercise, 34(9), 14541461. https://doi.org/10.1097/00005768-200209000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhde, M., Ajamian, M., Caio, G., De Giorgio, R., Indart, A., Green, P.H., Verna, E.C., Volta, U., & Alaedini, A. (2016). Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut, 65(12), 19301937. https://doi.org/10.1136/gutjnl-2016-311964

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Wijck, K., Lenaerts, K., van Loon, L.J.C., Peters, W.H.M., Buurman, W.A., & Dejong, C.H.C. (2011). Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One, 6(7), Article e22366. https://doi.org/10.1371/journal.pone.0022366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendt, D., van Loon, L.J., & Lichtenbelt, W.D. (2007). Thermoregulation during exercise in the heat: Strategies for maintaining health and performance. Sports Medicine, 37(8), 669682. https://doi.org/10.2165/00007256-200737080-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, Y.J., Law, L.Y.L., & Lim, C.L. (2013). Gastrointestinal response and endotoxemia during intense exercise in hot and cool environments. European Journal of Applied Physiology, 113(6), 15751583. https://doi.org/10.1007/s00421-013-2587-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuhl, M., Schneider, S., Lanphere, K., Conn, C., Dokladny, K., & Moseley, P. (2014). Exercise regulation of intestinal tight junction proteins. British Journal of Sports Medicine, 48(12), 980986. https://doi.org/10.1136/bjsports-2012-091585

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1737 1737 195
Full Text Views 43 43 2
PDF Downloads 70 70 3