Sequential Submaximal Training in Elite Male Rowers Does Not Result in Amplified Increases in Interleukin-6 or Hepcidin

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
  • | 2 Rowing Australia, Yarralumla, ACT, Australia
  • | 3 University of Canberra, Bruce, ACT, Australia
Restricted access

Previous research investigating single bouts of exercise have identified baseline iron status and circulating concentrations of interleukin-6 (IL-6) as contributors to the magnitude of postexercise hepcidin increase. The current study examined the effects of repeated training bouts in close succession on IL-6 and hepcidin responses. In a randomized, crossover design, 16 elite male rowers completed two trials, a week apart, with either high (1,000 mg) or low (<50 mg) calcium pre-exercise meals. Each trial involved two, submaximal 90-min rowing ergometer sessions, 2.5 hr apart, with venous blood sampled at baseline; pre-exercise; and 0, 1, 2, and 3 hr after each session. Peak elevations in IL-6 (approximately 7.5-fold, p < .0001) and hepcidin (approximately threefold, p < .0001) concentrations relative to baseline were seen at 2 and 3 hr after the first session, respectively. Following the second session, concentrations of both IL-6 and hepcidin remained elevated above baseline, exhibiting a plateau rather than an additive increase (2 hr post first session vs. 2 hr post second session, p = 1.00). Pre-exercise calcium resulted in a slightly greater elevation in hepcidin across all time points compared with control (p = .0005); however, no effect on IL-6 was evident (p = .27). Performing multiple submaximal training sessions in close succession with adequate nutritional support does not result in an amplified increase in IL-6 or hepcidin concentrations following the second session in male elite rowers. Although effects of calcium intake require further investigation, athletes should continue to prioritize iron consumption around morning exercise prior to exercise-induced hepcidin elevations to maximize absorption.

  • Beard, J.L. (2001). Iron biology in immune function, muscle metabolism and neuronal functioning. The Journal of Nutrition, 131(2), 568S580S. https://doi.org/10.1093/jn/131.2.568S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Febbraio, M.A., & Pedersen, B.K. (2002). Muscle‐derived interleukin‐6: Mechanisms for activation and possible biological roles. The FASEB Journal, 16(11), 13351347. https://doi.org/10.1096/fj.01-0876rev

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, C.P. (2006). Interleukin-6 in acute exercise and training: What is the biological relevance? Exercise Immunology Review, 12, 633.

    • Search Google Scholar
    • Export Citation
  • Fischer, C.P., Hiscock, N.J., Penkowa, M., Basu, S., Vessby, B., Kallner, A., Sjöberg, L.-B., & Pedersen, B.K. (2004). Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. The Journal of Physiology, 558(2), 633645. https://doi.org/10.1113/jphysiol.2004.066779

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganz, T., & Nemeth, E. (2012). Hepcidin and iron homeostasis. Biochimica et Biophysica Acta, Molecular Cell Research, 1823(9), 14341443. https://doi.org/10.1016/j.bbamcr.2012.01.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haakonssen, E.C., Ross, M.L., Knight, E.J., Cato, L.E., Nana, A., Wluka, A.E., Cicuttini, F.M., Wang, B.H., Jenkins, D.G., & Burke, L.M. (2015). The effects of a calcium-rich pre-exercise meal on biomarkers of calcium homeostasis in competitive female cyclists: A randomised crossover trial. PLoS One, 10(5), e0123302. https://doi.org/10.1371/journal.pone.0123302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennigar, S.R., McClung, J.P., & Pasiakos, S.M. (2017). Nutritional interventions and the IL‐6 response to exercise. The FASEB Journal, 31(9), 37193728. https://doi.org/10.1096/fj.201700080R

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henson, D.A., Nieman, D.C., Nehlsen-Cannarella, S.L., Fagoaga, O.R., Shannon, M., Bolton, M.R., Davis, J.M., Gaffney, C.T., Kelln, W.J., Austin, M.D., Hjertman, J.M., & Schilling, B.K. (2000). Influence of carbohydrate on cytokine and phagocytic responses to 2 h of rowing. Medicine & Science in Sports & Exercise, 32(8), 13841389. https://doi.org/10.1097/00005768-200008000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemna, E.H., Tjalsma, H., Podust, V.N., & Swinkels, D.W. (2007). Mass spectrometry–based hepcidin measurements in serum and urine: Analytical aspects and clinical implications. Clinical Chemistry, 53(4), 620628. https://doi.org/10.1373/clinchem.2006.079186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowdley, K.V., Brown, K.E., Ahn, J., & Sundaram, V. (2019). ACG clinical guideline: Hereditary hemochromatosis. The American Journal of Gastroenterology, 114(8), 12021218. https://doi.org/10.14309/ajg.0000000000000315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraidith, K., Svasti, S., Teerapornpuntakit, J., Vadolas, J., Chaimana, R., Lapmanee, S., Suntornsaratoon, P., Krishnamra, N., Fucharoen, S., & Charoenphandhu, N. (2016). Hepcidin and 1,25(OH)2D3 effectively restore Ca2+ transport in β-thalassemic mice: Reciprocal phenomenon of Fe2+ and Ca2+ absorption. American Journal of Physiology—Endocrinology and Metabolism, 311(1), E214E223. https://doi.org/10.1152/ajpendo.00067.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Zhang, H., Wu, J., Wang, A., Yang, F., Chen, B., Gao, Y., Ma, X., & Xu, Y. (2020). Hepcidin deficiency causes bone loss through interfering with the canonical Wnt/β-catenin pathway via Forkhead box O3a. Journal of Orthopaedic Translation, 23, 6776. https://doi.org/10.1016/j.jot.2020.03.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G.F., Xu, Y.J., He, Y.F., Du, B.C., Zhang, P., Zhao, D.Y., Yu, C., Qin, C.H., & Li, K. (2012). Effect of hepcidin on intracellular calcium in human osteoblasts. Molecular and Cellular Biochemistry, 366(1–2), 169174. https://doi.org/10.1007/s11010-012-1294-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T.-L., & Gleeson, M. (2005). The effects of carbohydrate supplementation during the second of two prolonged cycling bouts on immunoendocrine responses. European Journal of Applied Physiology, 95(5–6), 391399. https://doi.org/10.1007/s00421-005-0024-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lönnerdal, B. (2010). Calcium and iron absorption - mechanisms and public health relevance. International Journal for Vitamin and Nutrition Research, 80(45), 293299. https://doi.org/10.1024/0300-9831/a000036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, R., Moretti, D., McKay, A.K.A., Laarakkers, C.M., Vanswelm, R., Trinder, D., Cox, G.R., Zimmerman, M.B., Sim, M., Goodman, C., Dawson, B., & Peeling, P. (2019). The impact of morning versus afternoon exercise on iron absorption in athletes. Medicine & Science in Sports & Exercise, 51(10), 21472155. https://doi.org/10.1249/MSS.0000000000002026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A., Heikura, I.A., Burke, L.M., Peeling, P., Pyne, D.B., van Swelm, R.P.L., Laarakkers, C.M., & Cox, G.R. (2020). Influence of periodizing dietary carbohydrate on iron regulation and immune function in elite triathletes. International Journal of Sport Nutrition and Exercise Metabolism, 30(1), 3441. https://doi.org/10.1123/ijsnem.2019-0131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A., Peeling, P., Pyne, D.B., Welvaert, M., Tee, N., Leckey, J.J., Sharma, A.P., Ross, M.L.R., Garvican-Lewis, L.A., van Swelm, R.P.L., Laarakkers, C.M., & Burke, L.M. (2019). Acute carbohydrate ingestion does not influence the post-exercise iron-regulatory response in elite keto-adapted race walkers. Journal of Science and Medicine in Sport, 22(6), 635640. https://doi.org/10.1016/j.jsams.2018.12.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemeth, E., Tuttle, M.S., Powelson, J., Vaughn, M.B., Donovan, A., Ward, D.M., Ganz, T., & Kaplan, J. (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 306(5704), 20902093. https://doi.org/10.1126/science.1104742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newlin, M.K. (2012). The effects of acute exercise bouts on hepcidin in women. International Journal of Sport Nutrition and Exercise Metabolism, 22(2), 7988. https://doi.org/10.1123/ijsnem.22.2.79

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieman, D.C., Nehlsen-Cannarella, S.L., Fagoaga, O.R., Henson, D.A., Utter, A., Davis, J.M., Williams, F., & Butterworth, D.E. (1998). Influence of mode and carbohydrate on the cytokine response to heavy exertion. Medicine & Science in Sports & Exercise, 30(5), 671678. https://doi.org/10.1097/00005768-199805000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsonne, G., Lekander, M., Åkerstedt, T., Axelsson, J., & Ingre, M. (2016). Diurnal variation of circulating interleukin-6 in humans: A meta-analysis. PLoS One, 11(11), e0165799. https://doi.org/10.1371/journal.pone.0165799

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostrowski, K., Hermann, C., Bangash, A., Schjerling, P., Nielsen, J.N., & Pedersen, B.K. (1998). A trauma-like elevation of plasma cytokines in humans in response to treadmill running. The Journal of Physiology, 513(3), 889894. https://doi.org/10.1111/j.1469-7793.1998.889ba.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Dawson, B., Goodman, C., Landers, G., & Trinder, D. (2008). Athletic induced iron deficiency: New insights into the role of inflammation, cytokines and hormones. European Journal of Applied Physiology, 103(4), 381391. https://doi.org/10.1007/s00421-008-0726-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Dawson, B., Goodman, C., Landers, G., Wiegerinck, E.T., Swinkels, D.W., & Trinder, D. (2009a). Cumulative effects of consecutive running sessions on hemolysis, inflammation and hepcidin activity. European Journal of Applied Physiology, 106(1), 5159. https://doi.org/10.1007/s00421-009-0988-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Dawson, B., Goodman, C., Landers, G., Wiegerinck, E.T., Swinkels, D.W., & Trinder, D. (2009b). Effects of exercise on hepcidin response and iron metabolism during recovery. International Journal of Sport Nutrition and Exercise Metabolism, 19(6), 583597. https://doi.org/10.1123/ijsnem.19.6.583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., McKay, A.K.A., Pyne, D.B., Guelfi, K.J., McCormick, R.H., Laarakkers, C.M., Swinkels, D.W., Garvican-Lewis, L.A., Ross, M.L.R., Sharma, A.P., Leckey, J.J., & Burke, L.M. (2017). Factors influencing the post-exercise hepcidin-25 response in elite athletes. European Journal of Applied Physiology, 117(6), 12331239. https://doi.org/10.1007/s00421-017-3611-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Sim, M., Badenhorst, C.E., Dawson, B., Govus, A.D., Abbiss, C.R., Swinkels, D.W., & Trinder, D. (2014). Iron status and the acute post-exercise hepcidin response in athletes. PLoS One, 9(3), e93002. https://doi.org/10.1371/journal.pone.0093002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, M.A., Collings, R., Dainty, J.R., Swinkels, D.W., & Fairweather-Tait, S.J. (2009). Plasma hepcidin concentrations significantly predict interindividual variation in iron absorption in healthy men. The American Journal of Clinical Nutrition, 89(4), 10881091. https://doi.org/10.3945/ajcn.2008.27297

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, M., Dawson, B., Landers, G., Wiegerinck, E.T., Swinkels, D.W., Townsend, M.A., Trinder, D., & Peeling, P. (2012). The effects of carbohydrate ingestion during endurance running on post-exercise inflammation and hepcidin levels. European Journal of Applied Physiology, 112(5), 18891898. https://doi.org/10.1007/s00421-011-2156-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, M., Garvican-Lewis, L.A., Cox, G.R., Govus, A., McKay, A.K.A., Stellingwerff, T., & Peeling, P. (2019). Iron considerations for the athlete: A narrative review. European Journal of Applied Physiology, 119(7), 14631478. https://doi.org/10.1007/s00421-019-04157-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sims, N.A. (2021). Influences of the IL-6 cytokine family on bone structure and function. Cytokine, 146, 155655. https://doi.org/10.1016/j.cyto.2021.155655

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starkie, R.L., Angus, D.J., Rolland, J., Hargreaves, M., & Febbraio, M.A. (2000). Effect of prolonged, submaximal exercise and carbohydrate ingestion on monocyte intracellular cytokine production in humans. The Journal of Physiology, 528(3), 647655. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00647.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starkie, R.L., Rolland, J., Angus, D.J., Anderson, M.J., & Febbraio, M.A. (2001). Circulating monocytes are not the source of elevations in plasma IL-6 and TNF-alpha levels after prolonged running. American Journal of Physiology—Cell Physiology, 280(4), C769C774. https://doi.org/10.1152/ajpcell.2001.280.4.C769

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steensberg, A., Febbraio, M.A., Osada, T., Schjerling, P., van Hall, G., Saltin, B., & Pedersen, B.K. (2001). Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. The Journal of Physiology, 537(2), 633639. https://doi.org/10.1111/j.1469-7793.2001.00633.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, D.T., Erdman, K.A., & Burke, L.M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501528. https://doi.org/10.1016/j.jand.2015.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toxqui, L., & Vaquero, M. (2015). Chronic iron deficiency as an emerging risk factor for osteoporosis: A hypothesis. Nutrients, 7(4), 23242344 https://doi.org/10.3390/nu7042324

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tran, J., Rice, A.J., Main, L.C., & Gastin, P.B. (2015). Profiling the training practices and performances of elite rowers. International Journal of Sports Physiology and Performance, 10(5), 572580. https://doi.org/10.1123/ijspp.2014-0295

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., Li, G., Du, B., Zhang, P., Xiao, L., Sirois, P., & Li, K. (2011). Hepcidin increases intracellular Ca2+ of osteoblast hFOB1.19 through L-type Ca2+ channels. Regulatory Peptides, 172(1–3), 5861. https://doi.org/10.1016/j.regpep.2011.08.009

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 636 636 351
Full Text Views 21 21 3
PDF Downloads 34 34 5