Acute Ketone Salts–Caffeine–Taurine–Leucine Supplementation but not Ketone Salts–Taurine–Leucine, Improves Endurance Cycling Performance

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Manuel D. QuinonesExercise Nutrition Research Laboratory, School of Kinesiology, The University of Western Ontario, London, ON, Canada

Search for other papers by Manuel D. Quinones in
Current site
Google Scholar
PubMed
Close
and
Peter W.R. LemonExercise Nutrition Research Laboratory, School of Kinesiology, The University of Western Ontario, London, ON, Canada

Search for other papers by Peter W.R. Lemon in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Coingestion of ketone salts, caffeine and the amino acids, taurine, and leucine improves endurance exercise performance. However, there is no study comparing this coingestion to the same nutrients without caffeine. We assessed whether ketone salts–caffeine–taurine–leucine (KCT) supplementation was superior to caffeine-free ketone salts–taurine–leucine supplementation (KT), or to an isoenergetic carbohydrate placebo (CHO-PLAC). Thirteen recreationally active men (mean ± SD: 177.5 ± 6.1 cm, 75.9 ± 4.6 kg, 23 ± 3 years, 12.0 ± 5.1% body fat) completed a best effort 20-km cycling time-trial, followed 15 min later by a Wingate power cycle test, after supplementing with either KCT (approximately 7 g of beta-hydroxybutyrate, approximately 120 mg of caffeine, 2.1 g of leucine, and 2.7 g of taurine), KT (i.e., same supplement without caffeine), or isoenergetic CHO-PLAC (11 g of dextrose). Blood ketones were elevated (p < .001) after ingestion of both KCT (0.65 ± 0.12 mmol/L) and KT (0.72 ± 0.31 mmol/L) relative to CHO-PLAC (0.06 ± 0.05 mmol/L). Moreover, KCT improved (p < .003) 20-km cycling time-trial performance (37.80 ± 2.28 min), compared with CHO-PLAC (39.40 ± 3.33 min) but not versus KT (38.75 ± 2.87 min; p < .09). 20-km cycling time-trial average power output was greater with KCT (power output = 180.5 ± 28.7 W) versus both KT (170.9 ± 31.7 W; p = .049) and CHO-PLAC (164.8 ± 34.7 W; p = .001). Wingate peak power output was also greater for both KCT (1,134 ± 137 W; p = .031) and KT (1,132 ± 128 W; p = .039) versus CHO-PLAC (1,068 ± 127 W). These data suggest that the observed improved exercise performance effects of this multi-ingredient supplement containing beta-hydroxybutyrate salts, taurine, and leucine are attributed partially to the addition of caffeine.

Lemon (plemon@uwo.ca) is corresponding author, https://orcid.org/0000-0002-8252-0055

  • Collapse
  • Expand
  • Borg, G.A., & Noble, B.J. (1974). Perceived exertion. Exercise and Sport Science Review, 2(1), 131154. https://doi.org/10.1249/00003677-197400020-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M. (2021). Ketogenic low CHO, high fat diet: The future of elite endurance sport? The Journal of Physiology, 599(3), 819843. https://doi.org/10.1113/JP278928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P.J., Kirk, T., Ashmore, T., Willerton, K., Evans, R., Smith, A., Murray, A.J., Stubbs, B., West, J., McLure, S.W., King, M.T., Dodd, M.S., Holloway, C., Neubauer, S., Drawer, S., Veech, R.L., Griffin, J.L., & Clarke, K. (2016). Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metabolism, 24(2), 256268. https://doi.org/10.1016/j.cmet.2016.07.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dearlove, D.J., Harrison, O.K., Hodson, L., Jefferson, A., Clarke, K., & Cox, P.J. (2021). The effect of blood ketone concentration and exercise intensity on exogenous ketone oxidation rates in athletes. Medicine & Science in Sports & Exercise, 53(3), 505516. https://doi.org/10.1249/MSS.0000000000002502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M., Cogan, K.E., & Egan, B. (2017). Metabolism of ketone bodies during exercise and training: Physiological basis for exogenous supplementation. The Journal of Physiology, 595(9), 28572871. https://doi.org/10.1113/JP273185

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M., McSwiney, F.T., Brady, A.J., & Egan, B. (2019). No benefit of ingestion of a ketone monoester supplement on 10-km running performance. Medicine & Science in Sports & Exercise, 51(12), 25062515. https://doi.org/10.1249/MSS.0000000000002065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, A.A., & Sainsbury, A. (2017). Strategies to improve adherence to dietary weight loss interventions in research and real-world settings. Behavioral Sciences, 7(3), 44. https://doi.org/10.3390/bs7030044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grgic, J., Grgic, I., Pickering, C., Schoenfeld, B.J., Bishop, D.J., & Pedisic, Z. (2020). Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. British Journal of Sports Medicine, 54(11), 681688. https://doi.org/10.1136/bjsports-2018-100278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawley, J.A., & Leckey, J.J. (2015). Carbohydrate dependence during prolonged, intense endurance exercise. Sports Medicine, 45(Suppl. 1), S5S12. https://doi.org/10.1007/s40279-015-0400-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, S., & Kjerulf Greer, B. (2019). Influence of exogenous β-hydroxybutyrate on walking economy and rating of perceived exertion. Journal of Dietary Supplements, 16(4), 463469. https://doi.org/10.1080/19390211.2018.1471562

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kackley, M.L., Short, J.A., Hyde, P.N., LaFountain, R.A., Buga, A., Miller, V.J., Dickerson, R.M., Sapper, T.N., Barnhart, E.C., Krishnan, D., McElroy, C.A., Maresh, C.M., Kraemer, W.J., & Volek, J.S. (2020) A pre- workout supplement of ketone salts, caffeine, and amino acids improves high-intensity exercise performance in keto-naïve and keto-adapted individuals. Journal of the American College of Nutrition, 39(4), 290300. https://doi.org/10.1080/07315724.2020.1752846

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leckey, J.J., Ross, M.L., Quod, M., Hawley, J.A., & Burke, L.M. (2017). Ketone diester ingestion impairs time-trial performance in professional cyclists. Frontiers in Physiology, 8, 806. https://doi.org/10.3389/fphys.2017.00806

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margolis, M.L., and O’fallon, K.S. (2020). Utility of ketone supplementation to enhance physical performance: A systematic review. Advances in Nutrition, 11(2), 412419.

    • Search Google Scholar
    • Export Citation
  • Miller, V.J., LaFountain, R.A., Barnhart, E., Sapper, T.S., Short, J., Arnold, W.D., Hyde, P.N., Crabtree, C.D., Kackley, M.L., Kraemer, W.J., Villamena, F.A., & Volek, J.S. (2020). A ketogenic diet combined with exercise alters mitochondrial function in human skeletal muscle while improving metabolic health. American Journal of Physiology-Endocrinology and Metabolism, 319(6), E995E1007. https://doi.org/10.1152/ajpendo.00305.2020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noreen, E.E., & Lemon, P.W. (2006). Reliability of air displacement plethysmography in a large, heterogeneous sample. Medicine & Science in Sports & Exercise, 38(8), 15051509. https://doi.org/10.1249/01.mss.0000228950.60097.01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Malley, T., Myette-Cote, E., Durrer, C., & Little, J.P. (2017). Nutritional ketone salts increase fat oxidation but impair high-intensity exercise performance in healthy adult males. Applied Physiology, Nutrition, and Metabolism, 42(10), 10311035. https://doi.org/10.1139/apnm-2016-0641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, S.J., St Amand, T.A., Howlett, R.A., Heigenhauser, G.J.F., & Spriet, L.L. (1998). Human skeletal muscle pyruvate dehydrogenase kinase activity increases after a low-carbohydrate diet. American Journal of Physiology, 224(6), E980E986. https://doi.org/10.1152/ajplegacy.1973.224.6.1363

    • Search Google Scholar
    • Export Citation
  • Petrick, H.L., Brunetta, H.S., Pignanelli, C., Nunes, E.A., Van Loon, L.J.C., Burr, J.F., & Holloway, G.P. (2020). In vitro ketone-supported mitochondrial respiration is minimal when other substrates are readily available in cardiac and skeletal muscle. The Journal of Physiology, 598(21), 48694885. https://doi.org/10.1113/JP280032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickering, C., & Kiely, J. (2019). Are low doses of caffeine as ergogenic as higher doses? A critical review highlighting the need for comparison with current best practice in caffeine research. Nutrition, 67–68, 110535. https://doi.org/10.1016/j.nut.2019.06.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinckaers, P.J., Churchward-Venne, T.A., Bailey, D., & van Loon, L.J. (2017). Ketone bodies and exercise performance: The next magic bullet or merely hype? Sports Medicine, 47(3), 383391. https://doi.org/10.1007/s40279-016-0577-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poffé, C., Ramaekers, M., Van Thienen, R., & Hespel, P. (2019). Ketone ester supplementation blunts overreaching symptoms during endurance training overload. The Journal of Physiology, 597(12), 30093027. https://doi.org/10.1113/JP277831

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodger, S., Plews, D., Laursen, P., & Driller, M. (2017). The effects of an oral β-hydroxybutyrate supplement on exercise metabolism and cycling performance. Journal of Science and Cycling, 6(1), 2631.

    • Search Google Scholar
    • Export Citation
  • Saltin, B. (1973). Metabolic fundamentals in exercise. Medicine and Science in Sports, 5(3), 137146.

  • Sansone, M., Sansone, A., Borrione, P., Romanelli, F., Di Luigi, L., & Sgro, P. (2018). Effect of ketone bodies on endurance exercise. Current Sports Medicine Reports, 17(12), 444453. https://doi.org/10.1249/JSR.0000000000000542

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubbs, B.J., Cox, P.J., Evans, R.D., Santer, P., Miller, J.J., Faull, O.K., Magor-Elliott, S., Hiyama, S., Stirling, M., & Clarke, K. (2017). On the metabolism of exogenous ketones in humans. Frontiers in Physiology, 8, 848. https://doi.org/10.3389/fphys.2017.00848

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, S., Reading, J., & Shephard, R.J. (1992). Revision of the physical activity readiness questionnaire (PAR-Q). Canadian Journal of Sport Sciences, 17(4), 338345.

    • Search Google Scholar
    • Export Citation
  • Volek, J., Noakes, T., & Phinney, S. (2015). Rethinking fat as a fuel for endurance exercise. European Journal of Sport Science, 15(1), 1320. https://doi.org/10.1080/17461391.2014.959564

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldman, H.S., Basham, S.A., Price, F.G., Smith, J.W., Chander, H., Knight, A.C., Krings B.M., & McAllister, M.J. (2018). Exogenous ketone salts do not improve cognitive responses after a high-intensity exercise protocol in healthy college-aged males. Applied Physiology, Nutrition, and Metabolism, 43(7), 711717. https://doi.org/10.1139/apnm-2017-0724

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldron, M., Patterson, S.D., Tallent, J., & Jeffreis, J. (2018). The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans. A meta-analysis. Sports Medicine, 48, 12471253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warnock, R., Jeffries, O., Patterson, S., & Waldron, M. (2017). The effects of caffeine, taurine, or caffeine-taurine coingestion on repeat-sprint cycling performance and physiological responses. International Journal of Sports Physiology and Performance, 12(10), 13411347. https://doi.org/10.1123/ijspp.2016-0570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3526 3396 57
Full Text Views 368 357 5
PDF Downloads 619 599 4