Anthocyanin-Rich Blackcurrant Extract Preserves Gastrointestinal Barrier Permeability and Reduces Enterocyte Damage but Has No Effect on Microbial Translocation and Inflammation After Exertional Heat Stress

Click name to view affiliation

Ben J. Lee Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom

Search for other papers by Ben J. Lee in
Current site
Google Scholar
PubMed
Close
*
,
Tessa R. Flood Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester, United Kingdom

Search for other papers by Tessa R. Flood in
Current site
Google Scholar
PubMed
Close
,
Ania M. Hiles Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester, United Kingdom

Search for other papers by Ania M. Hiles in
Current site
Google Scholar
PubMed
Close
,
Ella F. Walker Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester, United Kingdom

Search for other papers by Ella F. Walker in
Current site
Google Scholar
PubMed
Close
,
Lucy E.V. Wheeler Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester, United Kingdom

Search for other papers by Lucy E.V. Wheeler in
Current site
Google Scholar
PubMed
Close
,
Kimberly M. Ashdown Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester, United Kingdom

Search for other papers by Kimberly M. Ashdown in
Current site
Google Scholar
PubMed
Close
,
Mark E.T. Willems Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester, United Kingdom

Search for other papers by Mark E.T. Willems in
Current site
Google Scholar
PubMed
Close
,
Rianne Costello Centre for Nutrition and Health, Oxford Brookes University, Oxford, United Kingdom

Search for other papers by Rianne Costello in
Current site
Google Scholar
PubMed
Close
,
Luke D. Greisler Department of Exercise Science, High Point University, High Point, NC, USA

Search for other papers by Luke D. Greisler in
Current site
Google Scholar
PubMed
Close
,
Phebe A. Romano Department of Exercise Science, High Point University, High Point, NC, USA

Search for other papers by Phebe A. Romano in
Current site
Google Scholar
PubMed
Close
,
Garrett W. Hill Department of Exercise Science, High Point University, High Point, NC, USA

Search for other papers by Garrett W. Hill in
Current site
Google Scholar
PubMed
Close
, and
Matthew R. Kuennen Department of Exercise Science, High Point University, High Point, NC, USA

Search for other papers by Matthew R. Kuennen in
Current site
Google Scholar
PubMed
Close
Restricted access

This study investigated the effects of 7 days of 600 mg/day anthocyanin-rich blackcurrant extract intake on small intestinal permeability, enterocyte damage, microbial translocation, and inflammation following exertional heat stress. Twelve recreationally active men (maximal aerobic capacity = 55.6 ± 6.0 ml·kg−1·min−1) ran (70% VO2max) for 60 min in an environmental chamber (34 °C, 40% relative humidity) on two occasions (placebo/blackcurrant, randomized double-blind crossover). Permeability was assessed from a 4-hr urinary excretion of lactulose and rhamnose and expressed as a ratio of lactulose/rhamnose. Venous blood samples were taken at rest and 20, 60, and 240 min after exercise to measure enterocyte damage (intestinal fatty acid-binding protein); microbial translocation (soluble CD14, lipopolysaccharide-binding protein); and interleukins 6, interleukins 10, and interleukins 1 receptor antagonist. Exercise increased rectal temperature (by ∼2.8 °C) and heart rate (by ∼123 beats/min) in each condition. Blackcurrant supplementation led to a ∼12% reduction in lactulose/rhamnose ratio (p < .0034) and enterocyte damage (∼40% reduction in intestinal fatty acid-binding protein area under the curve; p < .0001) relative to placebo. No between-condition differences were observed immediately after exercise for lipopolysaccharide-binding protein (mean, 95% confidence interval [CI]; +80%, 95% CI [+61%, +99%]); soluble CD14 (+37%, 95% CI [+22%, +51%]); interleukins 6 (+494%, 95% CI [+394%, +690%]); interleukins 10 (+288%, 95% CI [+105%, +470%]); or interleukins 1 receptor antagonist (+47%, 95% CI [+13%, +80%]; all time main effects). No between-condition differences for these markers were observed after 60 or 240 min of recovery. Blackcurrant extract preserves the GI barrier; however, at subclinical levels, this had no effect on microbial translocation and downstream inflammatory processes.

  • Collapse
  • Expand
  • Akiyama, S., Nesumi, A., Maeda-Yamamoto, M., Uehara, M., & Murakami, A. (2012). Effects of anthocyanin-rich tea “Sunrouge” on dextran sodium sulfate-induced colitis in mice. BioFactors, 38(3), 226233. https://doi.org/10.1002/biof.1008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asakura, H., Suga, Y., Yoshida, T., Ontachi, Y., Mizutani, T., Kato, M., Ito, T., Morishita, E., Yamazaki, M., & Miyamoto, K.-I. (2003). Pathophysiology of disseminated intravascular coagulation (DIC) progresses at a different rate in tissue factor-induced and lipopolysaccharide-induced DIC models in rats. Blood Coagulation & Fibrinolysis, 14(3), 221228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, J.A., Gonzalez, J.T., Burke, L.M., Close, G.L., Garthe, I., James, L.J., Jeukendrup, A.E., Morton, J.P., Nieman, D.C., Peeling, P., Phillips, S.M., Stellingwerff, T., van Loon, L.J.C., Williams, C., Woolf, K., Maughan, R., & Atkinson, G. (2020). PRESENT 2020: Text expanding on the checklist for proper reporting of evidence in sport and exercise nutrition trials. International Journal of Sport Nutrition and Exercise Metabolism, 30(1), 213. https://doi.org/10.1123/IJSNEM.2019-0326

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biedermann, L., Mwinyi, J., Scharl, M., Frei, P., Zeitz, J., Kullak-Ublick, G.A., Vavricka, S.R., Fried, M., Weber, A., Humpf, H.U., Peschke, S., Jetter, A., Krammer, G., & Rogler, G. (2013). Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis—An open pilot study. Journal of Crohn’s and Colitis, 7(4), 271279. https://doi.org/10.1016/j.crohns.2012.07.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchama, A., Parhar, R.S., El-Yazigi, A., Sheth, K., & Al-Sedairy, S. (1991). Endotoxemia and release of tumor necrosis factor and interleukin 1α in acute heatstroke. Journal of Applied Physiology, 70(6), 26402644. https://doi.org/10.1152/jappl.1991.70.6.2640

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Blacker, S.D., & Willems, M.E. (2015). New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. European Journal of Applied Physiology, 115(11), 23572365. https://doi.org/10.1007/s00421-015-3215-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., Myers, S.D., Gault, M.L., Edwards, V.C., & Willems, M.E.T. (2017). Dose effects of New Zealand blackcurrant on substrate oxidation and physiological responses during prolonged cycling. European Journal of Applied Physiology, 117(6), 12071216. https://doi.org/10.1007/s00421-017-3607-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M.D., & Willems, M.E.T. (2019). Dietary anthocyanins: A review of the exercise performance effects and related physiological responses. International Journal of Sport Nutrition and Exercise Metabolism, 29(3), 322330. https://doi.org/10.1123/ijsnem.2018-0088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, R.J.S., Gaskell, S.K., McCubbin, A.J., & Snipe, R.M.J. (2020). Exertional-heat stress-associated gastrointestinal perturbations during Olympic sports: Management strategies for athletes preparing and competing in the 2020 Tokyo Olympic Games. Temperature, 7(1), 5888. https://doi.org/10.1080/23328940.2019.1597676

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, R.J.S., Snipe, R.M.J., Kitic, C.M., & Gibson, P.R. (2017). Systematic review: Exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Alimentary Pharmacology & Therapeutics, 46(3), 246265. https://doi.org/10.1111/apt.14157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costello, R., Keane, K.M., Lee, B.J., Willems, M.E.T., Myers, S.D., Myers, F., Lewis, N.A., & Blacker, S.D. (2021). Plasma uptake of selected phenolic acids following New Zealand blackcurrant extract supplementation in humans. Journal of Dietary Supplements. https://doi.org/10.1080/19390211.2021.1914802

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Punder, K., & Pruimboom, L. (2015). Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Frontiers in Immunology, 6(MAY), Article 223. https://doi.org/10.3389/fimmu.2015.00223

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dill, D.B., & Costill, D.L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247248. https://doi.org/10.1152/jappl.1974.37.2.247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dokladny, K., Moseley, P.L., & Ma, T.Y. (2006). Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. American Journal of Physiology: Gastrointestinal and Liver Physiology, 290(2), G204G212. https://doi.org/10.1152/ajpgi.00401.2005

    • Search Google Scholar
    • Export Citation
  • Dokladny, K., Zuhl, M.N., & Moseley, P.L. (2016). Intestinal epithelial barrier function and tight junction proteins with heat and exercise. Journal of Applied Physiology, 120(6), 692701. https://doi.org/10.1152/japplphysiol.00536.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etxebarria, N., Beard, N.A., Gleeson, M., Wallett, A., McDonald, W.A., Pumpa, K.L., & Pyne, D.B. (2021). Dietary intake and gastrointestinal integrity in runners undertaking high-intensity exercise in the heat. International Journal of Sport Nutrition and Exercise Metabolism, 31(4), 314320. https://doi.org/10.1123/IJSNEM.2020-0367

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falgiano, P.A., Gillum, T.L., Schall, Z.J., Strag, H.R., & Kuennen, M.R. (2018). Dietary curcumin supplementation does not alter peripheral blood mononuclear cell responses to exertional heat stress. European Journal of Applied Physiology, 118(12), 27072717. https://doi.org/10.1007/s00421-018-3998-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flood, T.R., Montanari, S., Wicks, M., Blanchard, J., Sharp, H., Taylor, L., Kuennen, M.R., & Lee, B.J. (2020). Addition of pectin-alginate to a carbohydrate beverage does not maintain gastrointestinal barrier function during exercise in hot-humid conditions better than carbohydrate ingestion alone. Applied Physiology, Nutrition and Metabolism, 45(10), 11451155. https://doi.org/10.1139/APNM-2020-0118/SUPPL_FILE/APNM-2020-0118SUPPLA.DOCX

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukui, H. (2016). Endotoxin and other microbial translocation markers in the blood: A clue to understand leaky gut syndrome. Cellular & Molecular Medicine: Open Access, 2, 3. https://doi.org/10.21767/2573-5365.100023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaskell, S.K., Taylor, B., Muir, J., & Costa, R.J.S. (2019). Impact of 24-h high and low fermentable oligo-, di-, monosaccharide, and polyol diets on markers of exercise-induced gastrointestinal syndrome in response to exertional heat stress. Applied Physiology, Nutrition, and Metabolism, 45(6), 569580. https://doi.org/10.1139/APNM-2019-0187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González-Alonso, J., Crandall, C.G., & Johnson, J.M. (2008). The cardiovascular challenge of exercising in the heat. The Journal of Physiology, 586(1), 4553. https://doi.org/10.1113/jphysiol.2007.142158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiles, A.M., Flood, T.R., Lee, B.J., Wheeler, L.E.V., Costello, R., Walker, E.F., Ashdown, K.M., Kuennen, M.R., & Willems, M.E.T. (2020). Dietary supplementation with New Zealand blackcurrant extract enhances fat oxidation during submaximal exercise in the heat. Journal of Science and Medicine in Sport, 23(10), 908912. https://doi.org/10.1016/j.jsams.2020.02.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenny, W.L. (1998). Heat flux and storage in hot environments. International Journal of Sports Medicine, 19(Suppl. 1), S92S95. https://doi.org/10.1055/s-2007-971966

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapik, J.J., Austin, K.G., Farina, E.K., & Lieberman, H.R. (2018). Dietary supplement use in a large, representative sample of the US armed forces. Journal of the Academy of Nutrition and Dietetics, 118(8), 13701388. https://doi.org/10.1016/j.jand.2018.03.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., Wu, B., Fu, W., & Reddivari, L. (2019). The anti-inflammatory effects of dietary anthocyanins against ulcerative colitis. International Journal of Molecular Sciences, 20(10), Article 2588. https://doi.org/10.3390/ijms20102588

    • Search Google Scholar
    • Export Citation
  • Lim, C.L. (2018). Heat sepsis precedes heat toxicity in the pathophysiology of heat stroke—A new paradigm on an ancient disease. Antioxidants, 7(11), 149. https://doi.org/10.3390/antiox7110149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyall, K.A., Hurst, S.M., Cooney, J., Jensen, D., Lo, K., Hurst, R.D., & Stevenson, L.M. (2009). Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. American Journal of Physiology: Regulatory Integrative and Comparative Physiology, 297(1), R7081. https://doi.org/10.1152/ajpregu.90740.2008

    • Search Google Scholar
    • Export Citation
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727747. https://doi.org/10.1093/ajcn/79.5.727

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenna, Z., Berkemeier, Q., Naylor, A., Kleint, A., Gorini, F., Ng, J., Kim, J.-K., Sullivan, S., & Gillum, T. (2017). Bovine colostrum supplementation does not affect plasma I-FABP concentrations following exercise in a hot and humid environment. European Journal of Applied Physiology, 117, 25612567. https://doi.org/10.1007/s00421-017-3743-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medda, R., Lyros, O., Schmidt, J.L., Jovanovic, N., Nie, L., Link, B.J., Otterson, M.F., Stoner, G.D., Shaker, R., & Rafiee, P. (2015). Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells. Microvascular Research, 97, 167180. https://doi.org/10.1016/j.mvr.2014.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moran, D.S., Shitzer, A., & Pandolf, K.B. (1998). A physiological strain index to evaluate heat stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 275(1), R129R134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, A., Nesumi, A., Maeda-Yamamoto, M., Yamaguchi, H., Yashima, K., Miura, M., Nakano, T., & Nekoshima, K. (2015). Anthocyanin-rich tea Sunrouge upregulates expressions of heat shock proteins in the gastrointestinal tract of ICR mice: A comparison with the conventional tea cultivar Yabukita. Journal of Food and Drug Analysis, 23(3), 407416. https://doi.org/10.1016/j.jfda.2014.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nair, A.R., Masson, G.S., Ebenezer, P.J., Del Piero, F., & Francis, J. (2014). Role of TLR4 in lipopolysaccharide-induced acute kidney injury: Protection by blueberry. Free Radical Biology and Medicine, 71, 1625. https://doi.org/10.1016/j.freeradbiomed.2014.03.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, Y., Matsumoto, H., Morifuji, M., Iida, H., & Takeuchi, Y. (2010). Development and validation of a liquid chromatography tandem mass spectrometry method for simultaneous determination of four anthocyanins in human plasma after black currant anthocyanins ingestion. Journal of Agricultural and Food Chemistry, 58(2), 11741179. https://doi.org/10.1021/jf9027365

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narang, B.J., Atkinson, G., Gonzalez, J.T., & Betts, J.A. (2020). A tool to explore discrete-time data: The time series response analyser. International Journal of Sport Nutrition and Exercise Metabolism, 30(5), 374381. https://doi.org/10.1123/IJSNEM.2020-0150

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogden, H.B., Child, R.B., Fallowfield, J.L., Delves, S.K., Westwood, C.S., & Layden, J.D. (2020). The gastrointestinal exertional heat stroke paradigm: Pathophysiology, assessment, severity, aetiology and nutritional countermeasures. Nutrients, 12(2), Article 537. https://doi.org/10.3390/nu12020537

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pires, W., Veneroso, C.E., Wanner, S.P., Pacheco, D.A.S., Vaz, G.C., Amorim, F.T., Tonoli, C., Soares, D.D., & Coimbra, C.C. (2016). Association between exercise-induced hyperthermia and intestinal permeability: A systematic review. Sports Medicine, 47(7), 13891403. https://doi.org/10.1007/s40279-016-0654-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, N.L. (1964). A new weighting system for mean surface temperature of the human body. Journal of Applied Physiology, 19(3), 531533. https://doi.org/10.1152/jappl.1964.19.3.531

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riebe, D., Franklin, B.A., Thompson, P.D., Garber, C.E., Whitfield, G.P., Magal, M., & Pescatello, L.S. (2015). Updating ACSM’s recommendations for exercise preparticipation health screening. Medicine & Science in Sports & Exercise, 47(11), 24732479. https://doi.org/10.7916/D8M908BH

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riis, S., Møller, A.B., Dollerup, O., Høffner, L., Jessen, N., & Madsen, K. (2019). Acute and sustained effects of a periodized carbohydrate intake using the sleep-low model in endurance-trained males. Scandinavian Journal of Medicine and Science in Sports, 29(12), 18661880. https://doi.org/10.1111/sms.13541

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, S., Spalinger, M.R., Gottier, C., Biedermann, L., Zeitz, J., Lang, S., Weber, A., Rogler, G., & Scharl, M. (2016). Bilberry-derived anthocyanins modulate cytokine expression in the intestine of patients with ulcerative colitis. PLoS One, 11(5), Article e0154817. https://doi.org/10.1371/journal.pone.0154817

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, L.B. (1974). Human cardiovascular adjustments to exercise and thermal stress. Physiological Reviews, 54(1), 75159. https://doi.org/10.1152/physrev.1974.54.1.75

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, I., Della Gatta, P.A., Garnham, A., Porter, J., Burke, L.M., & Costa, R.J.S. (2021a). Assessing overall exercise recovery processes using carbohydrate and carbohydrate-protein containing recovery beverages. Frontiers in Physiology, 12, 50. https://doi.org/10.3389/FPHYS.2021.628863/BIBTEX

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, I., Della Gatta, P.A., Garnham, A., Porter, J., Burke, L.M., & Costa, R.J.S. (2021b). Does the nutritional composition of dairy milk based recovery beverages influence post-exercise gastrointestinal and immune status, and subsequent markers of recovery optimisation in response to high intensity interval exercise? Frontiers in Nutrition, 7, 343. https://doi.org/10.3389/FNUT.2020.622270/BIBTEX

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawka, M.N., Burke, L.M., Eichner, E.R., Maughan, R.J., Montain, S.J., & Stachenfeld, N.S. (2007). American College of Sports Medicine position stand. Exercise and fluid replacement. Medicine and Science in Sports and Exercise, 39(2), 377390. https://doi.org/10.1249/mss.0b013e31802ca597

    • Search Google Scholar
    • Export Citation
  • Selkirk, G.A., McLellan, T.M., Wright, H.E., & Rhind, S.G. (2008). Mild endotoxemia, NF-κB translocation, and cytokine increase during exertional heat stress in trained and untrained individuals. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 295(2), 611623. https://doi.org/10.1152/AJPREGU.00917.2007/ASSET/IMAGES/LARGE/ZH60080864390007.JPEG

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snipe, R.M.J., Khoo, A., Kitic, C.M., Gibson, P.R., & Costa, R.J.S. (2017). Carbohydrate and protein intake during exertional heat stress ameliorates intestinal epithelial injury and small intestine permeability. Applied Physiology, Nutrition, and Metabolism, 42(12), 12831292. https://doi.org/10.1139/apnm-2017-0361

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snipe, R.M.J., Khoo, A., Kitic, C.M., Gibson, P.R., & Costa, R.J.S. (2018). The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. European Journal of Applied Physiology, 118(2), 389400. https://doi.org/10.1007/s00421-017-3781-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szymanski, M.C., Gillum, T.L., Gould, L.M., Morin, D.S., & Kuennen, M.R. (2018). Short-term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. Journal of Applied Physiology, 124(2), 330340. https://doi.org/10.1152/japplphysiol.00515.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Wijck, K., Lenaerts, K., Grootjans, J., Wijnands, K.A.P., Poeze, M., van Loon, L.J.C., Dejong, C.H.C., & Buurman, W.A. (2012). Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: Strategies for evaluation and prevention. American Journal of Physiology: Gastrointestinal and Liver Physiology, 303(2), G155G168. https://doi.org/10.1152/ajpgi.00066.2012

    • Search Google Scholar
    • Export Citation
  • Wallett, A.M., Etxebarria, N., Beard, N.A., Saunders, P.U., Welvaert, M., Périard, J.D., McKune, A.J., & Pyne, D.B. (2021). Running at increasing intensities in the heat induces transient gut perturbations. International Journal of Sports Physiology and Performance, 16(5), 704710. https://doi.org/10.1123/IJSPP.2019-0973

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuhl, M.N., Lanphere, K.R., Kravitz, L., Mermier, C.M., Schneider, S., Dokladny, K., & Moseley, P.L. (2014). Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression. Journal of Applied Physiology (1985), 116(2), 183191. https://doi.org/10.1152/japplphysiol.00646.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4847 1345 90
Full Text Views 217 123 2
PDF Downloads 182 51 2