Methodological Considerations for Investigating Iron Status and Regulation in Exercise and Sport Science Studies

Click name to view affiliation

Alannah K.A. McKay Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia

Search for other papers by Alannah K.A. McKay in
Current site
Google Scholar
PubMed
Close
*
,
Marc Sim Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
Medical School, Royal Perth Hospital Unit, University Western Australia, Perth, WA, Australia

Search for other papers by Marc Sim in
Current site
Google Scholar
PubMed
Close
,
Diego Moretti Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
Nutrition Group, Health Department, Swiss Distance University of Applied Sciences, Regensdorf, Switzerland

Search for other papers by Diego Moretti in
Current site
Google Scholar
PubMed
Close
,
Rebecca Hall Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
Olympic Winter Institute of Australia, Docklands, VIC, Australia

Search for other papers by Rebecca Hall in
Current site
Google Scholar
PubMed
Close
,
Trent Stellingwerff Canadian Sport Institute-Pacific,Victoria, BC, Canada
Exercise Science, Physical & Health Education, University of Victoria, Victoria, BC, Canada

Search for other papers by Trent Stellingwerff in
Current site
Google Scholar
PubMed
Close
,
Richard J. Burden English Institute of Sport, University of Manchester, Manchester, United Kingdom
Faculty of Sport, Allied Health and Performance Science, St Mary’s University, Twickenham, United Kingdom
School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, United Kingdom

Search for other papers by Richard J. Burden in
Current site
Google Scholar
PubMed
Close
, and
Peter Peeling School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA, Australia
Western Australian Institute of Sport, Mt Claremont, WA, Australia

Search for other papers by Peter Peeling in
Current site
Google Scholar
PubMed
Close
Restricted access

Iron deficiency is a common health issue in active and athlete populations. Accordingly, research into iron status, regulation, absorption, and iron deficiency treatment strategies is increasing at a rapid rate. However, despite the increase in the quantity of research, various methodological issues need to be addressed as we progress our knowledge in this area. The purpose of this review is to highlight specific considerations for conducting iron-related research in active and athlete populations. First, we discuss the methodological importance of assessment and interpretation of iron status, with reference to blood collection protocols, participant screening procedures, and biomarker selection. Next, we consider numerous variables that should be accounted for in the design of iron-related research studies, such as the iron regulatory hormone hepcidin and its interaction with exercise, in addition to an examination of female physiology and its impact on iron metabolism. Subsequently, we explore dietary iron and nutrient interactions that impact iron regulation and absorption, with recommendations made for optimal methodological control. Consideration is then given to key features of long-term study designs, such as the monitoring of training load, oral iron supplementation, dietary analysis, and general lifestyle factors. Finally, we conclude our recommendations with an exploration of stable iron isotope tracers as a methodology to measure iron absorption. Ultimately, it is our intention that this review can be used as a guide to improve study design, biomarker analysis, and reporting of findings, to maximize the quality of future research outputs in iron-related research focused on active and athlete populations.

McKay (alannah.mckay@acu.edu.au) is corresponding author.

  • Collapse
  • Expand
  • Ackerman, K.E., Holtzman, B., Cooper, K.M., Flynn, E.F., Bruinvels, G., Tenforde, A.S., Popp, K.L., Simpkin, A.J., & Parziale, A.L. (2019). Low energy availability surrogates correlate with health and performance consequences of relative energy deficiency in sport. British Journal of Sports Medicine, 53(10), 628633. https://doi.org/10.1136/bjsports-2017-098958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angeli, A., Lainé, F., Lavenu, A., Ropert, M., Lacut, K., Gissot, V., Sacher-Huvelin, S., Jezequel, C., Moignet, A., & Laviolle, B. (2016). Joint model of iron and hepcidin during the menstrual cycle in healthy women. The AAPS Journal, 18(2), 490504. https://doi.org/10.1208/s12248-016-9875-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auerbach, M., Staffa, S.J., & Brugnara, C. (2021). Using reticulocyte hemoglobin equivalent as a marker for iron deficiency and responsiveness to iron therapy. Mayo Clinic Proceedings, 96(6), 15101519. https://doi.org/10.1016/j.mayocp.2020.10.042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badenhorst, C.E., Goto, K., O’Brien, W.J., & Sims, S. (2021). Iron status in athletic females, a shift in perspective on an old paradigm. Journal of Sports Sciences, 39(14), 15651575. https://doi.org/10.1080/02640414.2021.1885782

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bärtsch, P., Mairbäurl, H., & Friedmann, B. (1998). Pseudo-anemia caused by sports. Therapeutische Umschau, 55(4), 251255.

  • Beard, J.L. (2001). Iron biology in immune function, muscle metabolism and neuronal functioning. Journal of Nutrition, 131(2, Suppl. 2), 568S580S. https://doi.org/10.1093/jn/131.2.568S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belza, A., Henriksen, M., Ersbøll, A.K., Thilsted, S.H., & Tetens, I. (2005). Day-to-day variation in iron-status measures in young iron-deplete women. British Journal of Nutrition, 94(4), 551556. https://doi.org/10.1079/bjn20051461

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendich, A. (2001). Calcium supplementation and iron status of females. Nutrition, 17(1), 4651. https://doi.org/10.1016/s0899-9007(00)004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruinvels, G., Burden, R., Brown, N., Richards, T., & Pedlar, C. (2016). The prevalence and impact of heavy menstrual bleeding among athletes and mass start runners of the 2015 London Marathon. British Journal of Sports Medicine, 50(9), 566. https://doi.org/10.1136/bjsports-2015-095505

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burden, R.J., Pollock, N., Whyte, G.P., Richards, T., Moore, B., Busbridge, M., Srai, S.K., Otto, J., & Pedlar, C.R. (2015). Effect of intravenous iron on aerobic capacity and iron metabolism in elite athletes. Medicine & Science in Sports & Exercise, 47(7), 13991407. https://doi.org/10.1249/MSS.0000000000000568

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cercamondi, C.I., Egli, I.M., Ahouandjinou, E., Dossa, R., Zeder, C., Salami, L., Tjalsma, H., Wiegerinck, E., Tanno, T., Hurrell, R.F., Hounhouigan, J., & Zimmermann, M. (2010). Afebrile Plasmodium falciparum parasitemia decreases absorption of fortification iron but does not affect systemic iron utilization: A double stable-isotope study in young Beninese women. The American Journal of Clinical Nutrition, 92(6), 13851392. https://doi.org/10.3945/ajcn.2010.30051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clénin, G., Cordes, M., Huber, A., Schumacher, Y.O., Noack, P., Scales, J., & Kriemler, S. (2015). Iron deficiency in sports-definition, influence on performance and therapy. Swiss Medical Weekly, 145, Article w14196. https://doi.org/10.4414/smw.2015.14196

    • Search Google Scholar
    • Export Citation
  • Cook, J.D., & Monsen, E.R. (1976). Food iron absorption in human subjects. III. Comparison of the effect of animal proteins on nonheme iron absorption. The American Journal of Clinical Nutrition, 29(8), 859867. https://doi.org/10.1093/ajcn/29.8.859

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidsson, L. (2012). Assessment of iron bioavailability in humans using stable iron isotope techniques. IAEA Human Health Series No. 21.

    • Search Google Scholar
    • Export Citation
  • Ehn, L., Carlmark, B., & Hoglund, S. (1980). Iron status in athletes involved in intense physical activity. Medicine & Science in Sports & Exercise, 12(1), 6164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott-Sale, K.J., Minahan, C.L., de Jonge, X.A.J., Ackerman, K.E., Sipilä, S., Constantini, N.W., Lebrun, C.M., & Hackney, A.C. (2021). Methodological considerations for studies in sport and exercise science with women as participants: A working guide for standards of practice for research on women. Sports Medicine, 51(5), 843861. https://doi.org/10.1007/s40279-021-01435-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fensham, N., McKay, A.K.A., Tee, N., Lundy, B., Anderson, B., Morabito, A., Ross, M.L., & Burke, L.M. (2021). Sequential submaximal training in elite male rowers does not result in amplified increases in interleukin-6 or hepcidin. International Journal of Sport Nutrition and Exercise Metabolism, 23, 19. https://doi.org/10.1123/ijsnem.2021-0263

    • Search Google Scholar
    • Export Citation
  • Fomon, S.J., Nelson, S.E., Serfass, R.E., & Ziegler, E.E. (2005). Absorption and loss of iron in toddlers are highly correlated. The Journal of Nutrition, 135(4), 771777. https://doi.org/10.1093/jn/135.4.771

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, C., Rodriguez-Marroyo, J.A., & de Koning, J.J. (2017). Monitoring training loads: The past, the present, and the future. International Journal of Sports Physiology and Performance, 12(Suppl. 2), S22S28. https://doi.org/10.1123/ijspp.2016-0388

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser, I., Warner, P., & Marantos, P. (2001). Estimating menstrual blood loss in women with normal and excessive menstrual fluid volume. Obstetrics & Gynecology, 98(5), 806814. https://doi.org/10.1016/s0029-7844(01)01581-2

    • Search Google Scholar
    • Export Citation
  • Galetti, V., Stoffel, N.U., Sieber, C., Zeder, C., Moretti, D., & Zimmermann, M.B. (2021). Threshold ferritin and hepcidin concentrations indicating early iron deficiency in young women based on upregulation of iron absorption. EClinicalMedicine, 39, Article 101052. https://doi.org/10.1016/j.eclinm.2021.101052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganz, T. (2005). Hepcidin-a regulator of intestinal iron absorption and iron recycling by macrophages. Best Practice & Research Clinical Haematology, 18(2), 171182. https://doi.org/10.1016/j.beha.2004.08.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganz, T., Olbina, G., Girelli, D., Nemeth, E., & Westerman, M. (2008). Immunoassay for human serum hepcidin. Blood, 112(10), 42924297. https://doi.org/10.1182/blood-2008-02-139915

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvican, L.A., Lobigs, L., Telford, R., Fallon, K., & Gore, C.J. (2011). Haemoglobin mass in an anaemic female endurance runner before and after iron supplementation. International Journal of Sports Physiology and Performance, 6(1), 137140. https://doi.org/10.1123/ijspp.6.1.137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Głąbska, D., Guzek, D., Ślązak, J., & Włodarek, D. (2017). Assessing the validity and reproducibility of an iron dietary intake questionnaire conducted in a group of young Polish women. Nutrients, 9(3), Article 199. https://doi.org/10.3390/nu9030199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleerup, A., Rossander-Hulthén, L., Gramatkovski, E., & Hallberg, L. (1995). Iron absorption from the whole diet: Comparison of the effect of two different distributions of daily calcium intake. The American Journal of Clinical Nutrition, 61(1), 97104. https://doi.org/10.1093/ajcn/61.1.97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldner, F., Jacob, G., Raj, S.R., & Robertson, D. (2006). The importance of recognizing postural pseudoanemia. Comprehensive Therapy, 32(1), 5155. https://doi.org/10.1385/COMP:32:1:51

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gore, C.J., Hopkins, W.G., & Burge, C.M. (2005). Errors of measurement for blood volume parameters: A meta-analysis. Journal of Applied Physiology, 99(5), 17451758. https://doi.org/10.1152 /japplphysiol.00505.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govus, A.D., Garvican-Lewis, L.A., Abbiss, C.R., Peeling, P., & Gore, C.J. (2015). Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS One, 10(8), Article e0135120. https://doi.org/10.1371/journal.pone.0135120

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, R., Peeling, P., Nemeth, E., Bergland, D., McCluskey, W.T., & Stellingwerff, T. (2019). Single versus split dose of iron optimizes hemoglobin mass gains at 2106 m altitude. Medicine & Science in Sports & Exercise, 51(4), 751759. https://doi.org/10.1249/MSS.0000000000001847

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, L., Brune, M., & Rossander, L. (1989). Iron absorption in man: Ascorbic acid and dose-dependent inhibition by phytate. The American Journal of Clinical Nutrition, 49(1), 140144. https://doi.org/10.1093/ajcn/49.1.140

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, L., & Hulthén, L. (2003). High serum ferritin is not identical to high iron stores. The American Journal of Clinical Nutrition, 78(6), 12251226. https://doi.org/10.1093/ajcn/78.6.1225

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, P.M., & Arosio, P. (1996). The ferritins: Molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1275(3), 161203. https://doi.org/10.1016/0005-2728(96)00022-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, L.J., Armah, C.N., Dainty, J.R., Foxall, R.J., Lewis, D.J., Langford, N.J., & Fairweather-Tait, S.J. (2005). Impact of menstrual blood loss and diet on iron deficiency among women in the UK. British Journal of Nutrition, 94(4), 557564. https://doi.org/10.1079/bjn20051493

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, A.-L., Skeaff, C., & Gibson, R. (2000). The relative validity of a computerized food frequency questionnaire for estimating intake of dietary iron and its absorption modifiers. European Journal of Clinical Nutrition, 54(7), 592599. https://doi.org/10.1038/sj.ejcn.1601063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikura, I.A., Burke, L.M., Bergland, D., Uusitalo, A.L.T., Mero, A.A., & Stellingwerff, T. (2018). Impact of energy availability, health, and sex on hemoglobin mass responses following live-high-train-high altitude training in elite female and male distance athletes. International Journal of Sports Physiology and Performance, 13(8), 10901096. https://doi.org/10.1123/ijspp.2017-0547

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higham, J.M., O’Brien, P., & Shaw, R. (1990). Assessment of menstrual blood loss using a pictorial chart. British Journal of Obstetrics & Gynaecology, 97(8), 734739. https://doi.org/10.1111/j.1471-0528.1990.tb16249.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiscock, R., Simmons, S., Carstensen, B., & Gurrin, L. (2014). Comparison of Massimo Pronto-7 and HemoCue Hb 201+ with laboratory haemoglobin estimation: A clinical study. Anaesthesia and Intensive Care, 42(5), 608613. https://doi.org/10.1177/0310057X1404200510

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosain, F., Marsaglia, G., & Finch, C.A. (1967). Blood ferrokinetics in normal man. The Journal of Clinical Investigation, 46(1), 19. https://doi.org/10.1172/JCI105501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, R.F., Juillerat, M.-A., Reddy, M.B., Lynch, S.R., Dassenko, S.A., & Cook, J.D. (1992). Soy protein, phytate, and iron absorption in humans. The American Journal of Clinical Nutrition, 56(3), 573578. https://doi.org/10.1093/ajcn/56.3.573

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kautz, L., Jung, G., Valore, E.V., Rivella, S., Nemeth, E., & Ganz, T. (2014). Identification of erythroferrone as an erythroid regulator of iron metabolism. Nature Genetics, 46(7), 678684. https://doi.org/10.1038/ng.2996

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, M.F., Harrison, M.L., & Lalande, S. (2020). Impact of menstrual blood loss and oral contraceptive use on oxygen-carrying capacity. Medicine & Science in Sports & Exercise, 52(6), 14141419. https://doi.org/10.1249/mss.0000000000002252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koulaouzidis, A., Said, E., Cottier, R., & Saeed, A.A. (2009). Soluble transferrin receptors and iron deficiency, a step beyond ferritin: A systematic review. Journal of Gastrointestinal Liver Diseases, 18(3), 345352.

    • Search Google Scholar
    • Export Citation
  • Kroot, J.J.C., Tjalsma, H., Fleming, R.E., & Swinkels, D.W. (2011). Hepcidin in human iron disorders: Diagnostic implications. Clinical Chemistry, 57(12), 16501669. https://doi.org/10.1373/clinchem.2009.140053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lainé, F., Angeli, A., Ropert, M., Jezequel, C., Bardou-Jacquet, E., Deugnier, Y., Gissot, V., Lacut, K., Sacher-Huvelin, S., & Lavenu, A. (2016). Variations of hepcidin and iron-status parameters during the menstrual cycle in healthy women. British Journal of Haematology, 175(5), 980982. https://doi.org/10.1111/bjh.13906

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson-Meyer, D.E., Woolf, K., & Burke, L. (2018). Assessment of nutrient status in athletes and the need for supplementation. International Journal of Sport Nutrition and Exercise Metabolism, 28(2), 139158. https://doi.org/10.1123/ijsnem.2017-0338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, P.H., Macfarlane, D.J., Lam, T.H., & Stewart, S.M. (2011). Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 8(1), Article 115. https://doi.org/10.1186/1479-5868-8-115

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, N., Zhao, G., Wu, W., Zhang, M., Liu, W., Chen, Q., & Wang, X. (2020). The efficacy and safety of vitamin c for iron supplementation in adult patients with iron deficiency anemia: A randomized clinical trial. JAMA Network Open, 3(11), Article e2023644. https://doi.org/10.1001/jamanetworkopen.2020.23644

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., Rhee, D.K., Malhotra, R., Mayeur, C., Hurst, L.A., Ager, E., Shelton, G., Kramer, Y., McCulloh, D., Keefe, D., Bloch, K.D., Bloch, D.B., & Peterson, R.T. (2016). Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. Journal of Clinical Investigation, 126(1), 389401. https://doi.org/10.1172/jci83831

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magazanik, A., Weinstein, Y., Dlin, R.A., Derin, M., Schwartzman, S., & Allalouf, D. (1988). Iron deficiency caused by 7 weeks of intensive physical exercise. European Journal of Applied Physiology and Occupational Physiology, 57(2), 198202. https://doi.org/10.1007/BF00640663

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, R., Dawson, B., Sim, M., Lester, L., Goodman, C., & Peeling, P. (2020). The effectiveness of transdermal iron patches in athletes with suboptimal iron status (part 1). International Journal of Sport Nutrition and Exercise Metabolism, 30(3), 185190. https://doi.org/10.1123/ijsnem.2019-0309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, R., Dreyer, A., Dawson, B., Sim, M., Lester, L., Goodman, C., & Peeling, P. (2020). The effectiveness of daily and alternate day oral iron supplementation in athletes with suboptimal iron status (part 2). International Journal of Sport Nutrition and Exercise Metabolism, 30(3), 191196. https://doi.org/10.1123/ijsnem.2019-0310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormick, R., Moretti, D., McKay, A.K.A., Laarakkers, C.M., Van Swelm, R., Trinder, D., Cox, G.R., Zimmerman, M.B., Sim, M., Goodman, C., Dawson, B., & Peeling, P. (2019). The impact of morning versus afternoon exercise on iron absorption in athletes. Medicine & Science in Sports & Exercise, 51(10), 21472155. https://doi.org/10.1249/MSS.0000000000002026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A., McCormick, R., Tee, N., & Peeling, P. (2021). Exercise and heat stress: Inflammation and the iron regulatory response. International Journal of Sport Nutrition and Exercise Metabolism, 31(6), 460465. https://doi.org/10.1123/ijsnem.2021-0080

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A., Peeling, P., Pyne, D.B., Welvaert, M., Tee, N., Leckey, J.J., Sharma, A.P., Ross, M.L.R., Garvican-Lewis, L.A., Swinkels, D.W., Laarakkers, C.M., & Burke, L.M. (2019). Chronic adherence to a ketogenic diet modifies iron metabolism in elite athletes. Medicine & Science in Sports & Exercise, 51(3), 548555. https://doi.org/10.1249/MSS.0000000000001816

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A., Pyne, D.B., Burke, L.M., & Peeling, P. (2020). Iron metabolism: Interactions with energy and carbohydrate availability. Nutrients, 12(12), Article 3692. https://doi.org/10.3390/nu12123692

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, A.K.A., Stellingwerff, T., Smith, E.S., Martin, D.T., Mujika, I., Goosey-Tolfrey, V., Sheppard, J., & Burke, L.M. (2022). Defining training and performance calibre: A participant classification framework. International Journal of Sports Physiology and Performance, 17(2), 317331. https://doi.org/10.1123/ijspp.2021-0451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, Z., Addo, O.Y., Jefferds, M.E., Sharma, A.J., Flores-Ayala, R.C., & Brittenham, G.M. (2021). Physiologically based serum ferritin thresholds for iron deficiency in children and non-pregnant women: A US National Health and Nutrition Examination Surveys (NHANES) serial cross-sectional study. The Lancet Haematology, 8(8), e572e582. https://doi.org/10.1016/s2352-3026(21)00168-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, B., Pate, R., & Burgess, W. (1988). Foot impact force and intravascular hemolysis during distance running. International Journal of Sports Medicine, 9(1), 5660. https://doi.org/10.1055/s-2007-1024979

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milman, N.T. (2020). A review of nutrients and compounds, which promote or inhibit intestinal iron absorption: Making a platform for dietary measures that can reduce iron uptake in patients with genetic haemochromatosis. Journal of Nutrition and Metabolism, 2020, Article 7373498. https://doi.org/10.1155/2020/7373498

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moretti, D., Mettler, S., Zeder, C., Lundby, C., Geurts-Moetspot, A., Monnard, A., Swinkels, D.W., Brittenham, G.M., & Zimmermann, M.B. (2018). An intensified training schedule in recreational male runners is associated with increases in erythropoiesis and inflammation and a net reduction in plasma hepcidin. The American Journal of Clinical Nutrition, 108(6), 13241333. https://doi.org/10.1093/ajcn/nqy247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nabhan, D., Bielko, S., Sinex, J.A., Surhoff, K., Moreau, W.J., Schumacher, Y.O., Bahr, R., & Chapman, R.F. (2020). Serum ferritin distribution in elite athletes. Journal of Science and Medicine in Sport, 23(6), 554558. https://doi.org/10.1016/j.jsams.2019.12.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemeth, E., Valore, E.V., Territo, M., Schiller, G., Lichtenstein, A., & Ganz, T. (2003). Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood, 101(7), 24612463. https://doi.org/10.1182/blood-2002-10-3235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newlin, M.K., Williams, S., McNamara, T., Tjalsma, H., Swinkels, D.W., & Haymes, E.M. (2012). The effects of acute exercise bouts on hepcidin in women. International Journal of Sport Nutrition and Exercise Metabolism, 22(2), 7988. https://doi.org/10.1123/ijsnem.22.2.79

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, C.H., Valore, E.V., Waring, A.J., & Ganz, T. (2001). Hepcidin, a urinary antimicrobial peptide synthesized in the liver. Journal of Biological Chemistry, 276(11), 78067810. https://doi.org/10.1074/jbc.M008922200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlar, C.R., Newell, J., & Lewis, N.A. (2019). Blood biomarker profiling and monitoring for high-performance physiology and nutrition: Current perspectives, limitations and recommendations. Sports Medicine, 49(Suppl. 2), 185198. https://doi.org/10.1007/s40279-019-01158-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Blee, T., Goodman, C., Dawson, B., Claydon, G., Beilby, J., & Prins, A. (2007). Effect of iron injections on aerobic-exercise performance of iron-depleted female athletes. International Journal of Sport Nutrition and Exercise Metabolism, 17(3), 221231. https://doi.org/10.1123/ijsnem.17.3.221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Dawson, B., Goodman, C., Landers, G., & Trinder, D. (2008). Athletic induced iron deficiency: New insights into the role of inflammation, cytokines and hormones. European Journal of Applied Physiology, 103(4), 381391. https://doi.org/10.1007/s00421-008-0726-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Dawson, B., Goodman, C., Landers, G., Wiegerinck, E.T., Swinkels, D.W., & Trinder, D. (2009). Effects of exercise on hepcidin response and iron metabolism during recovery. International Journal of Sport Nutrition and Exercise Metabolism, 19(6), 583597. https://doi.org/10.1123/ijsnem.19.6.583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., McKay, A.K., Pyne, D.B., Guelfi, K.J., McCormick, R.H., Laarakkers, C.M., … Burke, L.M. (2017). Factors influencing the post-exercise hepcidin-25 response in elite athletes. European Journal of Applied Physiology, 117(6), 12331239. https://doi.org/10.1007/s00421-017-3611-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peeling, P., Sim, M., Badenhorst, C.E., Dawson, B., Govus, A.D., Abbiss, C.R., … Trinder, D. (2014). Iron status and the acute post-exercise hepcidin response in athletes. PLoS One, 9(3), Article e93002. https://doi.org/10.1371/journal.pone.0093002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petkus, D.L., Murray-Kolb, L.E., & De Souza, M.J. (2017). The unexplored crossroads of the female athlete triad and iron deficiency: A narrative review. Sports Medicine, 47(9), 17211737. https://doi.org/10.1007/s40279-017-0706-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petkus, D.L., Murray-Kolb, L.E., Scott, S.P., Southmayd, E.A., & De Souza, M.J. (2019). Iron status at opposite ends of the menstrual function spectrum. Journal of Trace Elements in Medicine and Biology, 51, 169175. https://doi.org/10.1016/j.jtemb.2018.10.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petry, N., Egli, I., Campion, B., Nielsen, E., & Hurrell, R. (2013). Genetic reduction of phytate in common bean (phaseolus vulgaris L.) seeds increases iron absorption in young women. The Journal of Nutrition, 143(8), 12191224. https://doi.org/10.3945/jn.113.175067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pivarnik, J., Goetting, M., & Senay, L. (1986). The effects of body position and exercise on plasma volume dynamics. European Journal of Applied Physiology and Occupational Physiology, 55(4), 450456. https://doi.org/10.1007/BF00422750

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowland, T. (2012). Iron deficiency in athletes: An update. American Journal of Lifestyle Medicine, 6(4), 319327. https://doi.org/10.1177/1559827611431541

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowland, T.W., Deisroth, M.B., Green, G.M., & Kelleher, J.F. (1988). The effect of iron therapy on the exercise capacity of nonanemic iron-deficient adolescent runners. American Journal of Diseases in Children, 142(2), 165169. https://doi.org/10.1001/archpedi.1988.02150020067030

    • Search Google Scholar
    • Export Citation
  • Schmidt, W., & Prommer, N. (2005). The optimised CO-rebreathing method: A new tool to determine total haemoglobin mass routinely. European Journal of Applied Physiology, 95(5), 486495. https://doi.org/10.1007/s00421-005-0050-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schotten, N., Pasker-de Jong, P.C.M., Moretti, D., Zimmermann, M.B., Geurts-Moespot, A.J., Swinkels, D.W., & van Kraaij, M.G.J. (2016). The donation interval of 56 days requires extension to 180 days for whole blood donors to recover from changes in iron metabolism. Blood, 128(17), 21852188. https://doi.org/10.1182/blood-2016-04-709451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, Y.O., Schmid, A., König, D., & Berg, A. (2002). Effects of exercise on soluble transferrin receptor and other variables of the iron status. British Journal of Sports Medicine, 36(3), 195199. https://doi.org/10.1136/bjsm.36.3.195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selby, G.B., & Eichner, E.R. (1986). Endurance swimming, intravascular hemolysis, anemia, and iron depletion: New perspective on athlete’s anemia. The American Journal of Medicine, 81(5), 791794. https://doi.org/10.1016/0002-9343(86)90347-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, M., Dawson, B., Landers, G., Swinkels, D.W., Tjalsma, H., Trinder, D., & Peeling, P. (2013). Effect of exercise modality and intensity on postexercise interleukin-6 and hepcidin levels. International Journal of Sport Nutrition and Exercise Metabolism, 23(2), 178186. https://doi.org/10.1123/ijsnem.23.2.178

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, M., Dawson, B., Landers, G., Swinkels, D.W., Tjalsma, H., Yeap, B.B., Trinder, D., & Peeling, P. (2015). Oral contraception does not alter typical post-exercise interleukin-6 and hepcidin levels in females. Journal of Science and Medicine in Sport, 18(1), 812. https://doi.org/10.1016/j.jsams.2013.11.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, M., Garvican-Lewis, L.A., Cox, G.R., Govus, A., McKay, A.K.A., Stellingwerff, T., & Peeling, P. (2019). Iron considerations for the athlete: A narrative review. European Journal of Applied Physiology, 119(7), 14631478. https://doi.org/10.1007/s00421-019-04157-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speich, C., Brittenham, G.M., Cercamondi, C.I., Zeder, C., Nkosi-Gondwe, T., Phiri, K.S., Moretti, D., & Zimmermann, M.B. (2021). Isotopic measurement of iron requirements in sub-Saharan African children. The American Journal of Clinical Nutrition, 114(3), 986996. https://doi.org/10.1093/ajcn/nqab161

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speich, C., Mitchikpè, C.E.S., Cercamondi, C.I., Zeder, C., Brittenham, G.M., Moretti, D., & Zimmermann, M.B. (2021). Direct assessment of body iron balance in women with and without iron supplementation using a long-term isotope dilution method in Benin and Switzerland. The American Journal of Clinical Nutrition, 113(6), 16571669. https://doi.org/10.1093/ajcn/nqaa433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speich, C., Wegmüller, R., Brittenham, G.M., Zeder, C., Cercamondi, C.I., Buhl, D., Prentice, A.M., Zimmermann, M.B., & Moretti, D. (2021). Measurement of long-term iron absorption and loss during iron supplementation using a stable isotope of iron (57Fe). British Journal of Haematology, 192(1), 179189. https://doi.org/10.1111/bjh.17039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, Y., Sakuraba, K., Sunohara, M., & Takaragawa, M. (2018). Variations in iron status linked to menstrual cycles among Japanese female athletes. International Journal of Analytical Bio-Science, 6(3), 4550.

    • Search Google Scholar
    • Export Citation
  • Walczyk, T., Davidsson, L., Zavaleta, N., & Hurrell, R.F. (1997). Stable isotope labels as a tool to determine the iron absorption by Peruvian school children from a breakfast meal. Fresenius’ Journal of Analytical Chemistry, 359(4), 445449. https://doi.org/10.1007/s002160050608

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, M.F., & Haymes, E.M. (1996). The effects of heat and exercise on sweat iron loss. Medicine & Science in Sports & Exercise, 28(2), 197203. https://doi.org/10.1097/00005768-199602000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization. (2011). Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. https://www.who.int/vmnis/indicators/haemoglobin.pdf

    • Search Google Scholar
    • Export Citation
  • Yang, Q., Jian, J., Katz, S., Abramson, S.B., & Huang, X. (2012). 17β-Estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology, 153(7), 31703178. https://doi.org/10.1210/en.2011-2045

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6503 2125 726
Full Text Views 410 129 14
PDF Downloads 447 75 14